L1正则化使得模型参数具有稀疏性的原理。

角度1:解空间形状

面试者给出的答案多数也是从这个角度出发的。在二维的情况下,黄色的部分是L2和L1正则项约束后的解空间,绿色的等高线是凸优化问题中目标函数的等高线,如图7.6所示。由图可知,L2正则项约束后的解空间是圆形,而L1正则项约束的解空间是多边形。显然,多边形的解空间更容易在尖角处与等高线碰撞出稀疏解。
在这里插入图片描述
但是为什么为什么加入了L1正则项就是定义了一个解空间约束?为什么L1和L2的解空间是不同的?面试官如果深究下去,很多面试者难以给出满意的答案。其实可以通过KKT条件给出一种解释。
事实上,“带正则项”和“带约束条件”是等价的。为了约束w的可能取值空间从而防止过拟合,我们为该最优化问题加上一个约束,就是w的L2范数的平方不能大于m:
在这里插入图片描述
为了求解带约束条件的凸优化问题,写出拉格朗日函数:
在这里插入图片描述
若w和λ分别是原问题和对偶问题的最优解,则根据KKT条件,它们应满足

Alt

仔细一看,第一个式子不就是w为带L2正则项的优化问题的最优解的条件嘛,而λ就是L2正则项前面的正则参数。
这时回头再看开头的问题就清晰了。L2正则化相当于为参数定义了一个圆形的解空间(因为必须保证L2范数不能大于m),而L1正则化(绝对值)相当于为参数定义了一个棱形的解空间。如果原问题目标函数的最优解不是恰好落在解空间内,那么约束条件下的最优解一定是在解空间的边界上,而L1“棱角分明”的解空间显然更容易与目标函数等高线在角点碰撞,从而产生稀疏解。

角度2:函数叠加

第二个角度试图用更直观的图示来解释L1产生稀疏性这一现象。
仅考虑一维的情况,多维情况是类似的,如图7.7所示。假设棕线是原始目标函数L(w)的曲线图,显然最小值点在蓝点处,且对应的w’值非0。
在这里插入图片描述
首先,考虑加上L2正则化项,目标函数变成L(w)+Cw^2,其函数曲线为黄色。此时,最小值点在黄点处,对应的w*的绝对值减小了,但仍然非0。
然后,考虑加上L1正则化项,目标函数变成L(w)+Clwl,其函数曲线为绿色。此时,最小值点在红点处,对应的w是0,产生了稀疏性。
产生上述现象的原因也很直观。加入L1正则项后,对带正则项的目标函数求导,正则项部分产生的导数在原点左边部分是一C,在原点右边部分是C,因此,只要原目标函数的导数绝对值小于C,那么带正则项的目标函数在原点左边部分始终是递减的,在原点右边部分始终是递增的,最小值点自然在原点处。相反,L2正则项在原点处的导数是0,只要原目标函数在原点处的导数不为0,那么最小值点就不会在原点,所以L2只有减小w绝对值的作用,对解空间的稀疏性没有贡献。在一些在线梯度下降算法中,往往会采用截断梯度法来产生稀疏性,这同L1正则项产生稀疏性的原理是类似的。

角度3:贝叶斯先验

从贝叶斯的角度来理解L1正则化和L2正则化,简单的解释是,L1正则化相当于对模型参数w引入了拉普拉斯先验,L2正则化相当于引入了高斯先验,而拉普拉斯先验使参数为0的可能性更大。
图7.8是高斯分布曲线图。由图可见,高斯分布在极值点(0点)处是平滑的,也就是高斯先验分布认为w在极值点附近取不同值的可能性是接近的。这就是L2正则化只会让w更接近0点,但不会等于0的原因。
高斯分布图
相反,图7.9是拉普拉斯分布曲线图。由图可见,拉普拉斯分布在极值点(0点)处是一个尖峰,所以拉普拉斯先验分布中参数w取值为0的可能性要更高。在此我们不再给出L1和L2正则化分别对应拉普拉斯先验分布和高斯先验分布的详细证明。
在这里插入图片描述

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值