caffe网络配置文件字段意义详解

解决方案:lenet_solver.prototxt

# The train/test net protocol buffer definition
net: "examples/mnist/lenet_train_test.prototxt"
//网络协议具体定义
# test_iter specifies how many forward passes the test should carry out.
# In the case of MNIST, we have test batch size 100 and 100 test iterations,
# covering the full 10,000 testing images.
test_iter: 100
//test迭代次数 如果batch_size =100,则100张图一批,训练100次,则可以覆盖10000张图的需求
# Carry out testing every 500 training iterations.
test_interval: 500
//训练迭代500次,测试一次
# The base learning rate, momentum and the weight decay of the network.
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
//网络参数:学习率,动量,权重的衰减
# The learning rate policy
lr_policy: "inv"
gamma: 0.0001
power: 0.75
//学习策略:有固定学习率和每步递减学习率
# Display every 100 iterations
display: 100
//每迭代100次显示一次
# The maximum number of iterations
max_iter: 10000
//最大迭代次数
# snapshot intermediate results
snapshot: 5000
//每5000次迭代存储一次数据,路径前缀是examples/mnist/lenet
snapshot_prefix: "examples/mnist/lenet"
# solver mode: CPU or GPU
solver_mode: GPU
//是否使用GPU还是CPU

网络构造:lenet_train_test.prototxt

name: "LeNet"           网络名
layer {
  name: "mnist"         本层名称
  type: "Data"              层类型
  top: "data"               下一层接口
  top: "label"              下一层接口
  include {
    phase: TRAIN
  }
  transform_param {
    scale: 0.00390625           #1/256,预处理如减均值,尺寸变换,随机剪,镜像等
  }
  data_param {
    source: "examples/mnist/mnist_train_lmdb"   训练数据位置
    batch_size: 64                  一次训练的样本数
    backend: LMDB                   读入的训练数据格式,默认leveldb
  }
}

layer {
  name: "mnist"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TEST
  }
  transform_param {
    scale: 0.00390625
  }
  data_param {
    source: "examples/mnist/mnist_test_lmdb"
    batch_size: 100                 一次测试使用100个数据
    backend: LMDB
  }
}

layer {
  name: "conv1"
  type: "Convolution"               卷积层
  bottom: "data"                上一层名“data”
  top: "conv1"                  下一层接口“conv1”
  param {
    lr_mult: 1                  (weights的学习率与全局相同)
  }
  param {
    lr_mult: 2                  (biases的学习率是全局的2倍)
  }
  convolution_param {
    num_output: 20              卷积核20个
    kernel_size: 5              卷积核尺寸5×5
    stride: 1                   步长1
    weight_filler {
      type: "xavier"                (随机的初始化权重和偏差)
    }
    bias_filler {
      type: "constant"              bias用0初始化
    }
  }
}

layer {
  name: "pool1"
  type: "Pooling"               池化层
  bottom: "conv1"               上层“conv1”
  top: "pool1"                  下层接口“pool1”
  pooling_param {
    pool: MAX                   池化函数用MAX
    kernel_size: 2              池化核函数大小2×2
    stride: 2                   步长2
  }
}

layer {
  name: "conv2"
  type: "Convolution"
  bottom: "pool1"
  top: "conv2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 50              卷积核50个
    kernel_size: 5
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}

layer {
  name: "pool2"
  type: "Pooling"
  bottom: "conv2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}

layer {
  name: "ip1"
  type: "InnerProduct"              全连接层
  bottom: "pool2"               上层连接“pool2”
  top: "ip1"                    “下层输出接口ip1”
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 500             输出数量500
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}

layer {
  name: "relu1"
  type: "ReLU"              激活函数
  bottom: "ip1"
  top: "ip1"    (这个地方还是ip1,底层与顶层相同减少开支,下一层全连接层的输入也还是ip1)
}

layer {
  name: "ip2"
  type: "InnerProduct"
  bottom: "ip1"
  top: "ip2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 10              输出结果10个
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}

layer {
  name: "accuracy"
  type: "Accuracy"
  bottom: "ip2"         上层连接ip2全连接层
  bottom: "label"           上层连接label层
  top: "accuracy"           输出接口为accuracy
  include {
    phase: TEST        
  }
}

layer {
  name: "loss"
  type: "SoftmaxWithLoss"       损失函数
  bottom: "ip2"
  bottom: "label"
  top: "loss"
}

训练网络模型:

# -*- coding: utf-8 -*-

import caffe
#caffe.set_device(0)
#caffe.set_mode_gpu()
caffe.set_mode_cpu()
solver = caffe.SGDSolver('/root/AI/lenet/solver.prototxt')
solver.solve()
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/houwenbin1986/article/details/52956693
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

caffe网络配置文件字段意义详解

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭