Caffe | 自定义字段和层

1.自定义字段

最近在老版本的caffe上跑resnext网络的时候出现如下所示的bug,正如我们上一篇文章Caffe | 核心积木Layer层类详解中说到的,在caffe.proto文件的PoolingParameter中没有ceil_mode这个field字段。因此只有在源码中添加这个参数以及相关实现代码,并重新编译caffe。

Message type “caffe.PoolingParameter” has no field named “ceil_mode”.

(1)修改pooling_layer.hpp文件
首先在头文件中添加参数的定义,因为参数在使用之前需要先定义(C/C++语言的特性)。

int height_, width_;
    int pooled_height_, pooled_width_;
    bool global_pooling_;
    bool ceil_mode_;   //添加bug中指出的缺少的属性
    Blob<Dtype> rand_idx_;
    Blob<int> max_idx_;

(2)修改pooling_layer.cpp文件中对应参数
也是在上一篇文章Caffe | 核心积木Layer层类详解中说到的,每一个层(包括当前存在问题的PoolingLayer)都继承自基类LayerParameter。而基类参数中有两个重要的函数如下:

  • Layersetup:读取指定层类的layer param(层参数),为后续reshape做准备。
  • reshape:根据输入该层的bottom blob的形状,和改成定制化的计算策略(也就是当前层的逻辑)计算得到对应的top blob的形状,并预先分配好内存空间。

所以在这里这两个函数跟参数紧密相关,因此我们主要修改的就是pooling_layer.cpp中的这两个函数。
Layersetup函数:

|| (!pool_param.has_stride_h() && !pool_param.has_stride_w()))
        << "Stride is stride OR stride_h and stride_w are required.";
    global_pooling_ = pool_param.global_pooling();

 // 添加的代码-----------------------------------
         ceil_mode_ = pool_param.ceil_mode();      //添加的代码,
                             //主要作用是从参数文件中获取ceil_mode_的参数数值。
// ------------------------------------------------------

    if (global_pooling_) {
      kernel_h_ = bottom[0]->height();
      kernel_w_ = bottom[0]->width();
   if (pad_h_ != 0 || pad_w_ != 0) {
     CHECK(this->layer_param_.pooling_param().pool()
         == PoolingParameter_PoolMethod_AVE
         || this->layer_param_.pooling_param().pool()
         == PoolingParameter_PoolMethod_MAX)
         << "Padding implemented only for average and max pooling.";
     CHECK_LT(pad_h_, kernel_h_);
     CHECK_LT(pad_w_, kernel_w_);

Reshape函数:

 void PoolingLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom,
       const vector<Blob<Dtype>*>& top) {
   CHECK_EQ(4, bottom[0]->num_axes()) << "Input must have 4 axes, "
       << "corresponding to (num, channels, height, width)";
   channels_ = bottom[0]->channels();
   height_ = bottom[0]->height();
   width_ = bottom[0]->width();
   if (global_pooling_) {
      kernel_h_ = bottom[0]->height();
      kernel_w_ = bottom[0]->width();
    }
 -  pooled_height_ = static_cast<int>(ceil(static_cast<float>(
 -      height_ + 2 * pad_h_ - kernel_h_) / stride_h_)) + 1;
 -  pooled_width_ = static_cast<int>(ceil(static_cast<float>(
 -      width_ + 2 * pad_w_ - kernel_w_) / stride_w_)) + 1;
 +  // Specify the structure by ceil or floor mode
 + 
 + // 添加的代码-----------------------------------
 +  if (ceil_mode_) {
 +    pooled_height_ = static_cast<int>(ceil(static_cast<float>(
 +        height_ + 2 * pad_h_ - kernel_h_) / stride_h_)) + 1;
 +    pooled_width_ = static_cast<int>(ceil(static_cast<float>(
 +        width_ + 2 * pad_w_ - kernel_w_) / stride_w_)) + 1;
 +  } else {
 +    pooled_height_ = static_cast<int>(floor(static_cast<float>(
 +        height_ + 2 * pad_h_ - kernel_h_) / stride_h_)) + 1;
 +    pooled_width_ = static_cast<int>(floor(static_cast<float>(
 +        width_ + 2 * pad_w_ - kernel_w_) / stride_w_)) + 1;
 +  }
 + // ------------------------------------------------------
 + 
    if (pad_h_ || pad_w_) {
      // If we have padding, ensure that the last pooling starts strictly
      // inside the image (instead of at the padding); otherwise clip the last.

(3)修改caffe.proto文件中PoolingParameter
因为所有层的参数定义都存放在caffe.proto文件中,因此修改参数后需要将新的参数添加到该文件对应的层参数中,本例中就将参数添加到PoolingParameter中。

/ If global_pooling then it will pool over the size of the bottom by doing
    // kernel_h = bottom->height and kernel_w = bottom->width
    optional bool global_pooling = 12 [default = false];


 // 添加的代码-----------------------------------
 +  // Specify floor/ceil mode
// 为pooling层添加参数,这样可以在net.prototxt文件中为pooling层设置该参数,
// 注意后面需要给其设置一个ID,同时设置一个默认值。(下面是我之前文章中提到过的ID的作用)
//Message的tag:
//每个message里面的每个field都对应一个tag,
//分别是1~15或者以上,比如required string number=1;
//这个数字就是用来在生成的二进制文件中搜索查询的标签(怪不得会快)。
//关于这个数字,1到15会花费1byte的编码空间,16到2047花费2byte。
//所以一般建议把那些频繁使用的名字的标签设为1到15之间的值~
         +  optional bool ceil_mode = 13 [default = true];
 // ------------------------------------------------------
  }

(4)重新编译caffe

返回到caffe的根目录,使用make指令(下面几个都可以,任选一个),即可。

 make
 make -j
 make -j16
 make -j32    // 这里j后面的数字与电脑配置有关系,可以加速编译
2.自定义新层

这里以新增一个简单的Loss层(OHEM)举例说明自定义新层的流程。简单介绍下OHEM,难例挖掘(OHEM)是指,针对模型训练过程中导致损失值很大的一些样本(即使模型很大概率分类错误的样本),重新训练它们.维护一个错误分类样本池, 把每个batch训练数据中的出错率很大的样本放入该样本池中,当积累到一个batch以后,将这些样本放回网络重新训练。这是RGB大神的策略,用于Faster Rcnn。主要就是新增3个文件,hpp/cpp/cu。主要就是修改forward_gpu(cpu),backward_gpu(cpu)这几个函数。

(1)hpp文件

#ifndef CAFFE_SOFTMAX_WITH_LOSS_OHEM_LAYER_HPP_
#define CAFFE_SOFTMAX_WITH_LOSS_OHEM_LAYER_HPP_

#include <vector>

#include "caffe/blob.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"

#include "caffe/layers/loss_layer.hpp"
#include "caffe/layers/softmax_layer.hpp"

namespace caffe {

/**
 * @brief Computes the multinomial logistic loss for a one-of-many
 *        classification task, passing real-valued predictions through a
 *        softmax to get a probability distribution over classes.
 *
 * This layer should be preferred over separate
 * SoftmaxLayer + MultinomialLogisticLossLayer
 * as its gradient computation is more numerically stable.
 * At test time, this layer can be replaced simply by a SoftmaxLayer.
 *
 * @param bottom input Blob vector (length 2)
 *   -# @f$ (N \times C \times H \times W) @f$
 *      the predictions @f$ x @f$, a Blob with values in
 *      @f$ [-\infty, +\infty] @f$ indicating the predicted score for each of
 *      the @f$ K = CHW @f$ classes. This layer maps these scores to a
 *      probability distribution over classes using the softmax function
 *      @f$ \hat{p}_{nk} = \exp(x_{nk}) /
 *      \left[\sum_{k'} \exp(x_{nk'})\right] @f$ (see SoftmaxLayer).
 *   -# @f$ (N \times 1 \times 1 \times 1) @f$
 *      the labels @f$ l @f$, an integer-valued Blob with values
 *      @f$ l_n \in [0, 1, 2, ..., K - 1] @f$
 *      indicating the correct class label among the @f$ K @f$ classes
 * @param top output Blob vector (length 1)
 *   -# @f$ (1 \times 1 \times 1 \times 1) @f$
 *      the computed cross-entropy classification loss: @f$ E =
 *        \frac{-1}{N} \sum\limits_{n=1}^N \log(\hat{p}_{n,l_n})
 *      @f$, for softmax output class probabilites @f$ \hat{p} @f$
 */
template <typename Dtype>
class SoftmaxWithLossOHEMLayer : public LossLayer<Dtype> {
 public:
   /**
    * @param param provides LossParameter loss_param, with options:
    *  - ignore_label (optional)
    *    Specify a label value that should be ignored when computing the loss.
    *  - normalize (optional, default true)
    *    If true, the loss is normalized by the number of (nonignored) labels
    *    present; otherwise the loss is simply summed over spatial locations.
    */
  explicit SoftmaxWithLossOHEMLayer(const LayerParameter& param)
      : LossLayer<Dtype>(param) {}
  virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);

  virtual inline const char* type() const { return "SoftmaxWithLossOHEM"; }
  virtual inline int ExactNumTopBlobs() const { return -1; }
  virtual inline int MinTopBlobs() const { return 1; }
  virtual inline int MaxTopBlobs() const { return 3; }

 protected:
  virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  /**
   * @brief Computes the softmax loss error gradient w.r.t. the predictions.
   *
   * Gradients cannot be computed with respect to the label inputs (bottom[1]),
   * so this method ignores bottom[1] and requires !propagate_down[1], crashing
   * if propagate_down[1] is set.
   *
   * @param top output Blob vector (length 1), providing the error gradient with
   *      respect to the outputs
   *   -# @f$ (1 \times 1 \times 1 \times 1) @f$
   *      This Blob's diff will simply contain the loss_weight* @f$ \lambda @f$,
   *      as @f$ \lambda @f$ is the coefficient of this layer's output
   *      @f$\ell_i@f$ in the overall Net loss
   *      @f$ E = \lambda_i \ell_i + \mbox{other loss terms}@f$; hence
   *      @f$ \frac{\partial E}{\partial \ell_i} = \lambda_i @f$.
   *      (*Assuming that this top Blob is not used as a bottom (input) by any
   *      other layer of the Net.)
   * @param propagate_down see Layer::Backward.
   *      propagate_down[1] must be false as we can't compute gradients with
   *      respect to the labels.
   * @param bottom input Blob vector (length 2)
   *   -# @f$ (N \times C \times H \times W) @f$
   *      the predictions @f$ x @f$; Backward computes diff
   *      @f$ \frac{\partial E}{\partial x} @f$
   *   -# @f$ (N \times 1 \times 1 \times 1) @f$
   *      the labels -- ignored as we can't compute their error gradients
   */
  virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
  virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);

  /// Read the normalization mode parameter and compute the normalizer based
  /// on the blob size.  If normalization_mode is VALID, the count of valid
  /// outputs will be read from valid_count, unless it is -1 in which case
  /// all outputs are assumed to be valid.
  virtual Dtype get_normalizer(
      LossParameter_NormalizationMode normalization_mode, int valid_count);

  /// The internal SoftmaxLayer used to map predictions to a distribution.
  shared_ptr<Layer<Dtype> > softmax_layer_;
  /// prob stores the output probability predictions from the SoftmaxLayer.
  Blob<Dtype> prob_;
  /// bottom vector holder used in call to the underlying SoftmaxLayer::Forward
  vector<Blob<Dtype>*> softmax_bottom_vec_;
  /// top vector holder used in call to the underlying SoftmaxLayer::Forward
  vector<Blob<Dtype>*> softmax_top_vec_;
  /// Whether to ignore instances with a certain label.
  bool has_ignore_label_;
  /// The label indicating that an instance should be ignored.
  int ignore_label_;
  /// How to normalize the output loss.
  LossParameter_NormalizationMode normalization_;

  int softmax_axis_, outer_num_, inner_num_;
};

}  // namespace caffe

#endif  // CAFFE_SOFTMAX_WITH_LOSS_OHEMLAYER_HPP_

(2)cpp文件

#include <algorithm>
#include <cfloat>
#include <vector>

#include "caffe/layers/softmax_loss_ohem_layer.hpp"
#include "caffe/util/math_functions.hpp"

namespace caffe {

template <typename Dtype>
void SoftmaxWithLossOHEMLayer<Dtype>::LayerSetUp(
    const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
  LossLayer<Dtype>::LayerSetUp(bottom, top);
  LayerParameter softmax_param(this->layer_param_);
  softmax_param.clear_loss_weight();
  softmax_param.set_type("Softmax");
  softmax_layer_ = LayerRegistry<Dtype>::CreateLayer(softmax_param);
  softmax_bottom_vec_.clear();
  softmax_bottom_vec_.push_back(bottom[0]);
  softmax_top_vec_.clear();
  softmax_top_vec_.push_back(&prob_);
  softmax_layer_->SetUp(softmax_bottom_vec_, softmax_top_vec_);

  has_ignore_label_ =
    this->layer_param_.loss_param().has_ignore_label();
  if (has_ignore_label_) {
    ignore_label_ = this->layer_param_.loss_param().ignore_label();
  }
  if (!this->layer_param_.loss_param().has_normalization() &&
      this->layer_param_.loss_param().has_normalize()) {
    normalization_ = this->layer_param_.loss_param().normalize() ?
                     LossParameter_NormalizationMode_VALID :
                     LossParameter_NormalizationMode_BATCH_SIZE;
  } else {
    normalization_ = this->layer_param_.loss_param().normalization();
  }
}

template <typename Dtype>
void SoftmaxWithLossOHEMLayer<Dtype>::Reshape(
    const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
  LossLayer<Dtype>::Reshape(bottom, top);
  softmax_layer_->Reshape(softmax_bottom_vec_, softmax_top_vec_);
  softmax_axis_ =
      bottom[0]->CanonicalAxisIndex(this->layer_param_.softmax_param().axis());
  outer_num_ = bottom[0]->count(0, softmax_axis_);
  inner_num_ = bottom[0]->count(softmax_axis_ + 1);
  CHECK_EQ(outer_num_ * inner_num_, bottom[1]->count())
      << "Number of labels must match number of predictions; "
      << "e.g., if softmax axis == 1 and prediction shape is (N, C, H, W), "
      << "label count (number of labels) must be N*H*W, "
      << "with integer values in {0, 1, ..., C-1}.";
  if (top.size() >= 2) {
    // softmax output
    top[1]->ReshapeLike(*bottom[0]);
  }
}

template <typename Dtype>
Dtype SoftmaxWithLossOHEMLayer<Dtype>::get_normalizer(
    LossParameter_NormalizationMode normalization_mode, int valid_count) {
  Dtype normalizer;
  switch (normalization_mode) {
    case LossParameter_NormalizationMode_FULL:
      normalizer = Dtype(outer_num_ * inner_num_);
      break;
    case LossParameter_NormalizationMode_VALID:
      if (valid_count == -1) {
        normalizer = Dtype(outer_num_ * inner_num_);
      } else {
        normalizer = Dtype(valid_count);
      }
      break;
    case LossParameter_NormalizationMode_BATCH_SIZE:
      normalizer = Dtype(outer_num_);
      break;
    case LossParameter_NormalizationMode_NONE:
      normalizer = Dtype(1);
      break;
    default:
      LOG(FATAL) << "Unknown normalization mode: "
          << LossParameter_NormalizationMode_Name(normalization_mode);
  }
  // Some users will have no labels for some examples in order to 'turn off' a
  // particular loss in a multi-task setup. The max prevents NaNs in that case.
  return std::max(Dtype(1.0), normalizer);
}

template <typename Dtype>
void SoftmaxWithLossOHEMLayer<Dtype>::Forward_cpu(
    const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
  NOT_IMPLEMENTED;
  
}

template <typename Dtype>
void SoftmaxWithLossOHEMLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
    const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
  NOT_IMPLEMENTED;
}

#ifdef CPU_ONLY
STUB_GPU(SoftmaxWithLossOHEMLayer);
#endif

INSTANTIATE_CLASS(SoftmaxWithLossOHEMLayer);
REGISTER_LAYER_CLASS(SoftmaxWithLossOHEM);

}  // namespace caffe

(3)cu文件

#include <algorithm>
#include <cfloat>
#include <vector>

#include "caffe/layers/softmax_loss_ohem_layer.hpp"
#include "caffe/util/math_functions.hpp"

namespace caffe {

template <typename Dtype>
__global__ void SoftmaxLossForwardGPU(const int nthreads,
          const Dtype* prob_data, const Dtype* label, Dtype* loss,
          const int num, const int dim, const int spatial_dim,
          const bool has_ignore_label_, const int ignore_label_,
          Dtype* counts) {
  CUDA_KERNEL_LOOP(index, nthreads) {
    const int n = index / spatial_dim;
    const int s = index % spatial_dim;
    const int label_value = static_cast<int>(label[n * spatial_dim + s]);
    if (has_ignore_label_ && label_value == ignore_label_) {
      loss[index] = 0;
      counts[index] = 0;
    } else {
      loss[index] = -log(max(prob_data[n * dim + label_value * spatial_dim + s],
                      Dtype(FLT_MIN)));
      counts[index] = 1;
    }
  }
}

template <typename Dtype>
void SoftmaxWithLossOHEMLayer<Dtype>::Forward_gpu(
    const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
  softmax_layer_->Forward(softmax_bottom_vec_, softmax_top_vec_);
  const Dtype* prob_data = prob_.gpu_data();
  const Dtype* label = bottom[1]->gpu_data();
  const int dim = prob_.count() / outer_num_;
  const int nthreads = outer_num_ * inner_num_;
  // Since this memory is not used for anything, we use it here to avoid having
  // to allocate new GPU memory to accumulate intermediate results.
  Dtype* loss_data = bottom[0]->mutable_gpu_diff();
  // Similarly, this memory is never used elsewhere, and thus we can use it
  // to avoid having to allocate additional GPU memory.
  Dtype* counts = prob_.mutable_gpu_diff();
  // NOLINT_NEXT_LINE(whitespace/operators)
  SoftmaxLossForwardGPU<Dtype><<<CAFFE_GET_BLOCKS(nthreads),
      CAFFE_CUDA_NUM_THREADS>>>(nthreads, prob_data, label, loss_data,
      outer_num_, dim, inner_num_, has_ignore_label_, ignore_label_, counts);
  Dtype loss;
  caffe_gpu_asum(nthreads, loss_data, &loss);
  Dtype valid_count = -1;
  // Only launch another CUDA kernel if we actually need the count of valid
  // outputs.
  if (normalization_ == LossParameter_NormalizationMode_VALID &&
      has_ignore_label_) {
    caffe_gpu_asum(nthreads, counts, &valid_count);
  }
  top[0]->mutable_cpu_data()[0] = loss / get_normalizer(normalization_,
                                                        valid_count);
  if (top.size() >= 2) {
    top[1]->ShareData(prob_);
  }

  if (top.size() >= 3){
    //output per-instance loss
    caffe_gpu_memcpy(top[2]->count() * sizeof(Dtype), loss_data,
       top[2]->mutable_gpu_data());
 }

  // Clear scratch memory to prevent interfering with backward (see #6202).
  caffe_gpu_set(bottom[0]->count(), Dtype(0), bottom[0]->mutable_gpu_diff());
}

template <typename Dtype>
__global__ void SoftmaxLossBackwardGPU(const int nthreads, const Dtype* top,
          const Dtype* label, Dtype* bottom_diff, const int num, const int dim,
          const int spatial_dim, const bool has_ignore_label_,
          const int ignore_label_, Dtype* counts) {
  const int channels = dim / spatial_dim;

  CUDA_KERNEL_LOOP(index, nthreads) {
    const int n = index / spatial_dim;
    const int s = index % spatial_dim;
    const int label_value = static_cast<int>(label[n * spatial_dim + s]);

    if (has_ignore_label_ && label_value == ignore_label_) {
      for (int c = 0; c < channels; ++c) {
        bottom_diff[n * dim + c * spatial_dim + s] = 0;
      }
      counts[index] = 0;
    } else {
      bottom_diff[n * dim + label_value * spatial_dim + s] -= 1;
      counts[index] = 1;
    }
  }
}

template <typename Dtype>
void SoftmaxWithLossOHEMLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top,
    const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
  if (propagate_down[1]) {
    LOG(FATAL) << this->type()
               << " Layer cannot backpropagate to label inputs.";
  }
  if (propagate_down[0]) {
    Dtype* bottom_diff = bottom[0]->mutable_gpu_diff();
    const Dtype* prob_data = prob_.gpu_data();
    const Dtype* top_data = top[0]->gpu_data();
    caffe_gpu_memcpy(prob_.count() * sizeof(Dtype), prob_data, bottom_diff);
    const Dtype* label = bottom[1]->gpu_data();
    const int dim = prob_.count() / outer_num_;
    const int nthreads = outer_num_ * inner_num_;
    // Since this memory is never used for anything else,
    // we use to to avoid allocating new GPU memory.
    Dtype* counts = prob_.mutable_gpu_diff();
    // NOLINT_NEXT_LINE(whitespace/operators)
    SoftmaxLossBackwardGPU<Dtype><<<CAFFE_GET_BLOCKS(nthreads),
        CAFFE_CUDA_NUM_THREADS>>>(nthreads, top_data, label, bottom_diff,
        outer_num_, dim, inner_num_, has_ignore_label_, ignore_label_, counts);

    Dtype valid_count = -1;
    // Only launch another CUDA kernel if we actually need the count of valid
    // outputs.
    if (normalization_ == LossParameter_NormalizationMode_VALID &&
        has_ignore_label_) {
      caffe_gpu_asum(nthreads, counts, &valid_count);
    }
    const Dtype loss_weight = top[0]->cpu_diff()[0] /
                              get_normalizer(normalization_, valid_count);
    caffe_gpu_scal(prob_.count(), loss_weight , bottom_diff);
  }
}

INSTANTIATE_LAYER_GPU_FUNCS(SoftmaxWithLossOHEMLayer);

}  // namespace caffe

(4)重新编译caffe

返回到caffe的根目录,使用make指令(下面几个都可以,任选一个),即可。

 make
 make -j
 make -j16
 make -j32    // 这里j后面的数字与电脑配置有关系,可以加速编译
layer {
  name: "loss"
  type: "SoftmaxWithLossOHEM"
  bottom: "fc_end"
  bottom: "label"
  top: "loss"

}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yuanCruise

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值