BLUP

#1、混合线性模型一般形式及含义
y = X β + Z u + e y=X \beta+Zu+e y=Xβ+Zu+e

n为观测值的个数,q为个体数目,一个个体可以有多个观测值
y 为 观 测 值 向 量 ( n × 1 ) y为观测值向量(n \times 1) yn×1
β 为 固 定 效 应 向 量 ( p × 1 ) , X 为 固 定 效 应 的 设 计 矩 阵 ( n × p ) \beta为固定效应向量(p \times 1),X为固定效应的设计矩阵(n \times p) β(p×1)X(n×p)
u 为 个 体 育 种 值 ( 随 机 效 应 ) 向 量 ( q × 1 ) , Z 为 育 种 值 得 设 计 矩 阵 ( n × q ) u为个体育种值(随机效应)向量(q \times 1),Z为育种值得设计矩阵(n \times q) u(q×1),Z(n×q)
e 为 残 差 向 量 ( n × 1 ) e为残差向量(n \times 1) en×1

E ( y ) = X β , E ( u ) = 0 , E ( e ) = 0 E(y)=X \beta,E(u)=\mathbf{0},E(e)=\mathbf{0} E(y)=Xβ,E(u)=0,E(e)=0

? E ( y ) = X β , 为 n × 1 向 量 , 每 个 个 体 观 测 值 分 布 的 期 望 为 每 个 个 体 的 固 定 效 应 的 值 E(y)=X \beta,为n \times 1向量,每个个体观测值分布的期望为每个个体的固定效应的值 E(y)=Xβ,n×1
E ( u ) = 0 E(u)=\mathbf{0} E(u)=0,为 q × 1   0 q \times 1\ \mathbf{0} q×1 0向量,即每个个体育种值分布的期望为0
? E ( e ) = 0 , 为 n × 1   0 向 量 , 即 每 个 个 体 的 残 差 分 布 的 期 望 为 0 E(e)=\mathbf{0},为n \times 1\ \mathbf{0}向量,即每个个体的残差分布的期望为0 E(e)=0,n×1 00
? 每个个体虽然只有一两个观测值,但观测值服从某一个分布,同样育种值也服从一个分布,最后会产生一个残差分布。

V a r ( u ) = G , V a r ( e ) = R , C o v ( u , e ′ ) = 0 Var(u)=G,Var(e)=R,Cov(u,e^{'})=\mathbf{0} Var(u)=G,Var(e)=R,Cov(u,e)=0

混 合 模 型 中 , u 和 e 服 从 m × p 维 正 态 分 布 , 即 混合模型中,u和e服从m \times p维正态分布,即 uem×p
u ∼ N ( 0 , G ) , e ∼ N ( 0 , R ) u\sim N(\mathbf{0},G),e\sim N(\mathbf{0},R) uN(0,G),eN(0,R)

u ∼ N ( 0 , G ) , 0 为 q × 1 向 量 ; G 为 q × q 的 方 阵 , 对 角 线 为 个 体 育 种 值 分 布 的 方 差 , 非 对 角 线 不 同 个 体 育 种 值 的 协 方 差 u\sim N(\mathbf{0},G),\mathbf{0}为q\times 1向量;G为q \times q的方阵,对角线为个体育种值分布的方差,非对角线不同个体育种值的协方差 uN(0,G),0q×1Gq×q线线
e ∼ N ( 0 , R ) , 0 为 n × 1 向 量 ; R 为 n × n 的 方 阵 , 对 角 线 为 方 差 , 非 对 角 线 为 协 方 差 e\sim N(\mathbf{0},R),\mathbf{0}为n\times 1向量;R为n \times n的方阵,对角线为方差,非对角线为协方差 eN(0,R),0n×1Rn×n线线

[ y 11 y 12 y 13 y 21 y 22 y 31 ] = [ 0 1 0 1 0 1 1 0 1 0 0 1 ] [ b 1 b 2 ] + [ 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 ] [ a 1 a 2 a 3 ] + [ e 11 e 12 e 13 e 21 e 22 e 31 ] \begin{bmatrix}y_{11}\\y_{12}\\y_{13}\\y_{21}\\y_{22}\\y_{31}\end{bmatrix}= \begin{bmatrix}0&1\\0&1\\0&1\\1&0\\1&0\\0&1\end{bmatrix} \begin{bmatrix}b_1\\b_2\end{bmatrix}+\begin{bmatrix}1&0&0\\1&0&0\\1&0&0\\0&1&0\\0&1&0\\0&0&1\end{bmatrix}\begin{bmatrix}a_1\\a_2\\a_3\end{bmatrix}+\begin{bmatrix} e_{11}\\e_{12}\\e_{13}\\e_{21}\\e_{22}\\e_{31}\end{bmatrix} y11y12y13y21y22y31=000110111001[b1b2]+111000000110000001a1a2a3+e11e12e13e21e22e31

#2、观测值和育种值的联合概率密度
多维正态分布的一般形式:

y ∼ N p ( u , S ) y \sim N_p(\mathbf{u,S}) yNp(u,S)
f ( y ) = 1 ( 2 π ) p 2 ∣ S ∣ 1 2 ⋅ e x p ( − 1 2 ( y − u ) ′ S − 1 ( y − u ) ) f(y)=\frac{1}{(2\pi)^{\frac{p}{2}}|\mathbf{S}|^{\frac{1}{2}}}\cdot exp\left(-\frac{1}{2}(y-\mathbf{u})^{'}\mathbf{S^{-1}}(y-\mathbf{u})\right) f(y)=(2π)2pS211exp(21(yu)S1(yu))
Y = [ y 1 y 2 ] ∼ N 2 ( [ μ 1 μ 2 ] , [ σ 1 2 ρ ρ σ 2 2 ] ) Y=\begin{bmatrix}y_1&y_2\end{bmatrix}\sim N_2\left(\begin{bmatrix}\mu_1&\mu_2\end{bmatrix},\begin{bmatrix}\sigma_1^2 & \rho \\ \rho & \sigma_2^2\end{bmatrix}\right) Y=[y1y2]N2([μ1μ2],[σ12ρρσ22])
f ( y 1 , y 2 ∣ μ , Σ ) = ( 2 π 1 − ρ 2 ) − 1 e x p [ 1 2 ( 1 − ρ 2 ) { ( y 1 − μ 1 σ 1 ) 2 − 2 ρ ( y 1 − μ 1 σ 1 ) ( y 2 − μ 2 σ 2 ) + ( y 2 − μ 2 σ 2 ) 2 } ] f(y_1,y_2|\mu,\Sigma)=(2\pi \sqrt{1-\rho^2})^{-1}exp\left[ \frac{1}{2(1-\rho^2)}\left\{\left(\frac{y_1-\mu_1}{\sigma_1}\right)^2-2\rho \left(\frac{y_1-\mu_1}{\sigma_1}\right) \left(\frac{y_2-\mu_2}{\sigma_2}\right)+\left(\frac{y_2-\mu_2}{\sigma_2}\right)^2\right\}\right] f(y1,y2μ,Σ)=(2π1ρ2 )1exp[2(1ρ2)1{(σ1y1μ1)22ρ(σ1y1μ1)(σ2y2μ2)+(σ2y2μ2)2}]
y 1 , y 2 为 随 机 变 量 , μ 1 , μ 2 , σ 1 , σ 2 , ρ 均 为 某 一 个 固 定 的 数 值 y_1,y_2为随机变量,\mu_1,\mu_2,\sigma_1,\sigma_2,\rho均为某一个固定的数值 y1,y2μ1,μ2,σ1,σ2,ρ

产生多维正态分布R语言代码:

library(MASS) 
Sigma <- matrix(c(10,3,3,2),2,2) 
Sigma 
x=mvrnorm(n=1000, rep(0, 2), Sigma)
#x为二维正态分布

y 和 u 的 联 合 密 度 函 数 为 : y和u的联合密度函数为: yu
f ( y , u ) = f 1 ( y ∣ u ) ⋅ f 2 ( u ) f(y,u)=f_1(y|u)\cdot f_2(u) f(y,u)=f1(yu)f2(u)
根据多维正态分布的概率密度公式,   f 1 ( y ∣ u ) \ f_1(y|u)  f1(yu)如下:

y ∣ u = y − X β − Z u = e ∼ N ( 0 , R ) f 1 ( y ∣ u ) = C 1 ⋅ e x p { − 1 2 ( y − X β − Z u ) ′   R − 1   ( y − X β − Z u ) } C 1 = ( 2 π ) − m 2 ∣ R ∣ − 1 2 \begin{aligned} &amp;&amp;y|u=y-X\beta-Zu=e \sim N(\mathbf{0},R) \\&amp;&amp;f_1(y|u)=C_1\cdot exp\left\{-\frac{1}{2}(y-X\beta-Zu)^{&#x27;}\ R^{-1}\ (y-X\beta-Zu) \right\} \\&amp;&amp;C_1= (2\pi)^{-\frac{m}{2}}|R|^{-\frac{1}{2}} \end{aligned} yu=yXβZu=eN(0,R)f1(yu)=C1exp{21(yXβZu) R1 (yXβZu)}C1=(2π)2mR21

根据多维正态分布的概率密度公式,   f 2 ( u ) \ f_2(u)  f2(u)如下
u ∼ N ( 0 , G ) f 2 ( u ) = C 2 ⋅ e x p { − 1 2 u ′ G − 1 u } C 2 = ( 2 π ) − m 2 ∣ G ∣ − 1 2 \begin{aligned} &amp;&amp;u\sim N(\mathbf{0},G) \\&amp;&amp;f_2(u)=C_2\cdot exp\left \{-\frac{1}{2}u^{&#x27;}G^{-1}u\right\} \\&amp;&amp; C_2=(2\pi)^{-\frac{m}{2}}|G|^{-\frac{1}{2}} \end{aligned} uN(0,G)f2(u)=C2exp{21uG1u}C2=(2π)2mG21

所以联合概率密度 f ( y , u ) f(y,u) f(y,u)为:
f ( y , u ) = C ⋅ e x p { − 1 2 ( y − X β − Z u ) ′   R − 1   ( y − X β − Z u ) − 1 2 u ′ G − 1 u } f(y,u)=C\cdot exp\left\{-\frac{1}{2}(y-X\beta-Zu)^{&#x27;}\ R^{-1}\ (y-X\beta-Zu)-\frac{1}{2}u^{&#x27;}G^{-1}u\right\} f(y,u)=Cexp{21(yXβZu) R1 (yXβZu)21uG1u}

3、对联合概率密度求解

求 此 函 数 关 于 β 和 u 的 极 大 值 , 因 此 令 偏 导 等 于 0 , 可 得 : 求此函数关于\beta和u的极大值,因此令偏导等于0,可得: βu0
∂ f ( y , u ) ∂ β = C ⋅ e x p { a } ( X ′ R − 1 y − X ′ R − 1 X β − X ′ R − 1 Z u ) = 0 ∂ f ( y , u ) ∂ u = C ⋅ e x p { a } ( Z ′ R − 1 y − Z ′ R − 1 X β − Z ′ R − 1 Z u − G − 1 u ) = 0 \begin{aligned} \frac{\partial f(y,u)}{\partial \beta} &amp;=&amp; C\cdot exp\{a\}(X^{&#x27;}R^{-1}y-X^{&#x27;}R^{-1}X\beta-X^{&#x27;}R^{-1}Zu) =0 \\ \frac{\partial f(y,u)}{\partial u} &amp;=&amp; C\cdot exp\{a\}(Z^{&#x27;}R^{-1}y-Z^{&#x27;}R^{-1}X\beta-Z^{&#x27;}R^{-1}Zu-G^{-1}u)=0 \end{aligned} βf(y,u)uf(y,u)==Cexp{a}(XR1yXR1XβXR1Zu)=0Cexp{a}(ZR1yZR1XβZR1ZuG1u)=0
其 中 的 a 为 f ( y , u ) 中 的 指 数 函 数 的 幂 。 上 式 整 理 后 得 其中的a为f(y,u)中的指数函数的幂。上式整理后得 af(y,u)
X ′ R − 1 X β ^ + X ′ R − 1 Z u ^ = X ′ R − 1 y Z ′ R − 1 X β ^ + ( Z ′ R − 1 Z + G − 1 ) u ^ = Z ′ R − 1 y \begin{aligned} X^{&#x27;}R^{-1}X\hat{\beta}+X^{&#x27;}R^{-1}Z\hat{u}=X^{&#x27;}R^{-1}y \\Z^{&#x27;}R^{-1}X\hat{\beta}+(Z^{&#x27;}R^{-1}Z+G^{-1})\hat{u}=Z^{&#x27;}R^{-1}y \end{aligned} XR1Xβ^+XR1Zu^=XR1yZR1Xβ^+(ZR1Z+G1)u^=ZR1y

其矩阵形式为:
[ X ′ R − 1 X X ′ R − 1 Z Z ′ R − 1 X Z ′ R − 1 Z + G − 1 ] [ β ^ u ^ ] = [ X ′ R − 1 y Z ′ R − 1 y ] \begin{bmatrix} X^{&#x27;}R^{-1}X &amp;X^{&#x27;}R^{-1}Z \\ Z^{&#x27;}R^{-1}X &amp;Z^{&#x27;}R^{-1}Z+G^{-1} \end{bmatrix} \begin{bmatrix} \hat{\beta} \\ \hat{u} \end{bmatrix}= \begin{bmatrix} X^{&#x27;}R^{-1}y\\ Z^{&#x27;}R^{-1}y \end{bmatrix} [XR1XZR1XXR1ZZR1Z+G1][β^u^]=[XR1yZR1y]
此方程组称为混合模型方程组(mixed model equations,MME)。

http://wenku.baidu.com/view/ce677909f78a6529647d539b

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值