8.11 实例:主成分分析

主成分分析(principal components analysis,PCA)是一个简单的机器学习算法,可以通过基础的线性代数知识推导。
假设在 Rn 空间中我们有 m 个点 {x(1),,x(m)} ,我们希望对这些点进行有损压缩。有损压缩表示我们使用更少的内存,但损失一些精度去存储这些点。我们希望损失的精度尽可能少。
一种编码这些点的方式是用低维表示。对于每个点 x(i)Rn ,会有一个对应的编码向量 c(i)Rl 。如果 l n 小,那么我们便使用了更少的内存来存储原来的数据。我们希望找到一个编码函数,根据输入返回编码, f(x)=c ;我们也希望找到一个解码函数,给定编码重构输入, xg(f(x))
PCA由我们选择的解码函数而定。具体地,为了简化解码器,我们使用矩阵乘法将编码映射回 Rn 。即 g(c)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值