8.9 Moore-Penrose伪逆

  对于非方矩阵而言,其逆矩阵没有定义。假设在下面的问题中,我们希望通过矩阵 A 的左逆B来求解线性方程,

Ax=y

等式两边左乘左逆B后,我们得到
x=By

取决于问题的形式,我们可能无法设计一个唯一的映射将 A 映射到B
  如果矩阵 A 的行数大于列数,那么上述方程可能没有解。如果矩阵A的行数小于列数,那么上述矩阵可能有多个解。
   Moore-Penrose伪逆(Moore-Penrose pseudoinverse)使我们在这类问题上取得了一定的进展。矩阵 A 的伪逆定义为:
A+=limα0(ATA+αI)1AT

计算伪逆的实际算法没有基于这个定义,而是使用下面的公式:
A+=VD+UT

其中,矩阵 UDV 是矩阵 A 奇异值分解后得到的矩阵。对角矩阵D的伪逆 DT 是其非零元素取倒数之后再转置得到的。
  当矩阵 A 的列数多于行数时,使用伪逆求解线性方程是众多可能解法中的一种。特别地,x=A+y是方程所有可行解中欧几里得范数 ||x||2 最小的一个。
  当矩阵 A 的行数多于列数时,可能没有解。在这种情况下,通过伪逆得到的x使得 Ax y 的欧几里得距离||Axy||2最小。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值