基于Windows11的RAGFlow安装方法简介

基于Windows11的RAGFlow安装方法简介
一、下载安装Docker
docker 下载地址
https://www.docker.com/

Download Docker Desktop
选择Download for Winodws AMD64下载Docker Desktop Installer.exe
双点击 Docker Desktop Installer.exe 进行安装

测试Docker安装是否成功:命令行中输入docker

二、配置Docker
打开Docker 应用时 不需要注册,直接跳过。
国外docker镜像 可能无法拉取,需在Docker中做DockerEngine的相关配置:
设置/Docker Engine中添加如下代码:

"experimental": false, 后加上如下Docker镜像地址,建议直接复制
"registry-mirrors": [
	"https://docker.m.daocloud.io/",
	"https://huecker.io/",
	"https://dockerhub.timeweb.cloud",
	"https://noohub.ru/",
	"https://dockerproxy.com",
	"https://docker.mirrors.ustc.edu.cn",
	"https://docker.nju.edu.cn",
	"https://xx4bwyg2.mirror.aliyuncs.com",
	"http://f1361db2.m.daocloud.io",
	"https://registry.docker-cn.com",
	"http://hub-mirror.c.163.com"
]

配置修改后,点击 Apply&restart 保存并重启Docker

三、下载RAGFlow
注,如不能识别git ,请先下载git 工具。

cd d:\cwgis_docker
d:\cwgis_docker>git clone https://github.com/infiniflow/ragflow.git

git clone https://github.com/infiniflow/ragflow.git

下载完后
编辑d:\cwgis_docker/ragflow/docker/.env文件
启用ragflow:v0.17.0
RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.0

禁用ragflow:v0.17.0-slim 默认v0.17.0-slim没有embedding models嵌入式模型
#RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.0-slim

如果本机80端口有冲突,需修改yml配置文件,如80改为81端口
docker/docker-compose.yml修改配置文件中80端口号为81
或者如:先停止IIS的80服务

cpu模式
(下载镜像组件redis/mysql/ragflow/es/…)
在命令行中输入如下命令:
cd d:\cwgis_docker/ragflow

docker compose -f docker/docker-compose.yml up -d

gpu模式

docker compose -f docker/docker-compose-gpu.yml up -d

报错处理:

共享目录问题:
如果报错,可反复执行上面的命令
设置共享目录:
ragflow-logs
D:\cwgis_docker\ragflow\docker\ragflow-logs
问题:
Error response from daemon: Ports are not available: exposing port TCP 0.0.0.0:80 -> 127.0.0.1:0: listen tcp 0.0.0.0:80: bind: An attempt was made to access a socket in a way forbidden by its access permissions.
解决办法一:先停止IIS的80服务
再执行下面命令OK:
docker compose -f docker/docker-compose.yml up -d
解决办法二:docker/docker-compose.yml修改配置文件中80端口号为81

在这里插入图片描述

启动ragflow服务
docker logs -f ragflow-server

docker logs -f ragflow-server

在这里插入图片描述

本地先安装ollama和deepseek安装布署
系统变量:OLLAMA_HOST=192.168.1.82:11434

查看deepseek token大小值:131072

C:\Users\Administrator>ollama show deepseek-r1:8b
  Model
    architecture        llama
    parameters          8.0B
    context length      131072
    embedding length    4096
    quantization        Q4_K_M

  Parameters
    stop    "<|begin▁of▁sentence|>"
    stop    "<|end▁of▁sentence|>"
    stop    "<|User|>"
    stop    "<|Assistant|>"

  License
    MIT License
    Copyright (c) 2023 DeepSeek

ragflow界面
http://localhost/login 或者http://localhost:81/login
http://192.168.1.82/login
先注册一个本地管理员账号并登录
在这里插入图片描述
添加模型ollama+deepseek模型
在这里插入图片描述
在这里插入图片描述
创建本地知识库

在这里插入图片描述
新建聊天chat, AI助手
在这里插入图片描述

在这里插入图片描述
创建Agent智能体
在这里插入图片描述

本blog地址:https://blog.csdn.net/hsg77

<think>好的,我现在需要帮助用户解决在Windows环境下使用RAGFlow的问题。用户希望得到配置或使用教程。首先,我应该先了解RAGFlow是什么,以及它通常的安装环境要求。 RAGFlow可能是一个基于Python的应用,或者需要特定的深度学习框架。根据用户提供的引用,引用[1]提到在Windows上推荐使用MSVC作为QT的C++编译器,这可能涉及到需要安装Visual Studio 2019。此外,引用[3]是关于Python环境配置的教程,说明安装Python和设置环境变量是基础步骤。引用[4]则涉及Windows Terminal的美化,可能对终端操作有帮助。 首先,用户可能需要安装Python,并配置好环境变量,如引用[3]所述。然后可能需要安装深度学习框架,比如PyTorch或TensorFlow,这通常需要Python的支持。另外,引用[1]提到的MSVC编译器可能在某些依赖项中需要,特别是如果RAGFlow涉及到C++扩展或需要编译某些组件的话。 接下来,我需要确认RAGFlow是否有官方的Windows支持。如果官方文档没有特别说明,可能需要通过Docker或者WSL来运行,但用户可能更希望在原生Windows环境下配置。这时候可能需要检查依赖项,比如是否支持Windows的库,或者是否有替代的安装方法。 考虑到用户提供的引用中没有直接提到RAGFlow,可能需要假设用户可能需要安装类似NextCloud的环境,但引用[2]是关于NextCloud的安装,这可能不相关。不过,用户的问题是关于RAGFlow,所以需要专注于Python环境和可能的深度学习框架配置。 可能的步骤包括: 1. 安装Python并配置环境变量(引用[3])。 2. 安装必要的库,如PyTorch、Transformers等。 3. 使用pip安装RAGFlow(如果可用)。 4. 解决可能的C++编译依赖,安装Visual Studio 2019的C++构建工具(引用[1])。 5. 配置Windows Terminal以便更好的命令行体验(引用[4])。 需要注意的潜在问题包括版本兼容性,Python版本与RAGFlow的兼容性,以及是否需要GPU支持(CUDA等)。此外,如果RAGFlow依赖特定Linux工具,可能需要使用WSL,但用户希望原生Windows,所以可能需要替代方案。 总结回答结构: - 安装Python环境 - 安装深度学习框架和依赖 - 安装C++编译工具(如果需要) - 安装RAGFlow并配置 - 可能的问题和解决方法 需要生成相关问题,如安装依赖的问题、配置GPU支持、常见错误解决等。</think>### RAGFlowWindows环境下的配置与使用教程 #### 一、环境准备 1. **安装Python环境** - 参考引用[3]的详细教程,下载Python安装包(建议3.8+版本),安装时勾选`Add Python to PATH`以自动配置环境变量。 - 验证安装:打开命令行输入`python --version`和`pip --version`,确认版本信息[^3]。 2. **安装C++编译工具(可选)** - 如果RAGFlow依赖需要编译的库(如某些Python包),需安装Visual Studio 2019的**C++桌面开发工具**,勾选“MSVC v142”组件[^1]。 3. **配置深度学习框架(如需要)** - 若RAGFlow依赖PyTorch/TensorFlow,通过`pip install torch`或官网指令安装。GPU加速需额外安装CUDA驱动。 #### 二、安装RAGFlow 1. **通过pip安装** ```bash pip install ragflow ``` - 若提示权限问题,添加`--user`参数;若依赖冲突,建议使用虚拟环境(如`venv`)。 2. **源码安装(可选)** ```bash git clone https://github.com/RAGFlow官方仓库.git cd RAGFlow pip install -r requirements.txt ``` #### 三、基础配置与使用 1. **配置文件修改** - 根据项目要求调整`config.yaml`,设置数据路径、模型路径(如嵌入模型)等。 2. **运行示例** ```python from ragflow import RAGPipeline pipeline = RAGPipeline(config_path="config.yaml") result = pipeline.query("你的问题") ``` 3. **终端优化(可选)** - 参考引用[4],使用Windows Terminal并配置PowerShell美化,提升命令行操作效率[^4]。 #### 四、常见问题解决 - **依赖冲突**:使用`conda`或`venv`创建独立环境。 - **缺少DLL文件**:安装VC_redist.x64.exe(微软官网下载)。 - **GPU未调用**:检查CUDA版本与PyTorch的兼容性。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值