Pytorch搭建基本的GAN模型及训练过程

概述

本文通过Pytorch搭建基本的GAN模型结构,并通过 torchvision 的 MNIST 数据集进行测试。
对于GAN模型的基本结构及公式的理解可以看前一篇博客:
GAN的理论知识及公式的理解
下文的实现完全对照这一篇博客的基本理论。

代码实战

代码是基于Pytorch环境创建,需要先安装Pytorch环境
Pytorch环境搭建教程链接:
Pytorch搭建教程

导包

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
import torchvision
from torchvision import transforms

数据准备

# 对数据做归一化 (-1, 1)
transform = transforms.Compose([
    transforms.ToTensor(),         # 将数据转换成Tensor格式,channel, high, witch,数据在(0, 1)范围内
    transforms.Normalize(0.5, 0.5) # 通过均值和方差将数据归一化到(-1, 1)之间
])

# 下载数据集
train_ds = torchvision.datasets.MNIST('data',
                                      train=True,
                                      transform=transform,
                                      download=True)
                                      
# 设置dataloader
dataloader = torch.utils.data.DataLoader(train_ds, batch_size=64, shuffle=True)

# 返回一个批次的数据
imgs, _ = next(iter(dataloader))

# imgs的大小
imgs.shape

定义生成器

# 输入是长度为 100 的 噪声(正态分布随机数)
# 输出为(1, 28, 28)的图片
# linear 1 :   100----256
# linear 2:    256----512
# linear 2:    512----28*28
# reshape:     28*28----(1, 28, 28)

class Generator(nn.Module): #创建的 Generator 类继承自 nn.Module
    def __init__(self): # 定义初始化方法
        super(Generator, self).__init__() #继承父类的属性
        self.main = nn.Sequential( #使用Sequential快速创建模型
                                  nn.Linear(100, 256),
                                  nn.ReLU(),
                                  nn.Linear(256, 512),
                                  nn.ReLU(),
                                  nn.Linear(512, 28*28),
                                  nn.Tanh()                     # 输出层使用Tanh()激活函数,使输出-1, 1之间
        )
    def forward(self, x):              # 定义前向传播 x 表示长度为100 的noise输入
        img = self.main(x)
        img = img.view(-1, 28, 28) #将img展平,转化成图片的形式,channel为1可写可不写
        return img

定义判别器

## 输入为(1, 28, 28)的图片  输出为二分类的概率值,输出使用sigmoid激活 0-1
# BCEloss计算交叉熵损失

# nn.LeakyReLU   f(x) : x>0 输出 x, 如果x<0 ,输出 a*x  a表示一个很小的斜率,比如0.1
# 判别器中一般推荐使用 LeakyReLU

class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.main = nn.Sequential(
                                  nn.Linear(28*28, 512), #输入是28*28的张量,也就是图片
                                  nn.LeakyReLU(), # 小于0的时候保存一部分梯度
                                  nn.Linear(512, 256),
                                  nn.LeakyReLU(),
                                  nn.Linear(256, 1), # 二分类问题,输出到1上
                                  nn.Sigmoid()
        )
    def forward(self, x):
        x = x.view(-1, 28*28)
        x = self.main(x)
        return x

初始化模型、优化器及损失计算函数

# 定义设备
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# 初始化模型
gen = Generator().to(device)
dis = Discriminator().to(device)
# 优化器
d_optim = torch.optim.Adam(dis.parameters(), lr=0.0001)
g_optim = torch.optim.Adam(gen.parameters(), lr=0.0001)
# 损失函数
loss_fn = torch.nn.BCELoss()

绘图函数

def gen_img_plot(model, epoch, test_input):
    prediction = np.squeeze(model(test_input).detach().cpu().numpy())
    fig = plt.figure(figsize=(4, 4))
    for i in range(16):
        plt.subplot(4, 4, i+1)
        plt.imshow((prediction[i] + 1)/2) # 确保prediction[i] + 1)/2输出的结果是在0-1之间
        plt.axis('off')
    plt.show()
    
test_input = torch.randn(16, 100, device=device)

GAN的训练

# 保存每个epoch所产生的loss值
D_loss = []
G_loss = []

# 训练循环
for epoch in range(20): #训练20个epoch
   d_epoch_loss = 0 # 初始损失值为0
   g_epoch_loss = 0
   # len(dataloader)返回批次数,len(dataset)返回样本数
   count = len(dataloader)
   # 对dataloader进行迭代
   for step, (img, _) in enumerate(dataloader): # enumerate加序号
       img = img.to(device) #将数据上传到设备
       size = img.size(0) # 获取每一个批次的大小
       random_noise = torch.randn(size, 100, device=device)  # 随机噪声的大小是size个
       
       d_optim.zero_grad() # 将判别器前面的梯度归0
       
       real_output = dis(img)      # 判别器输入真实的图片,real_output是对真实图片的预测结果 
       
       # 得到判别器在真实图像上的损失
       # 判别器对于真实的图片希望输出的全1的数组,将真实的输出与全1的数组进行比较
       d_real_loss = loss_fn(real_output, 
                             torch.ones_like(real_output))      
       d_real_loss.backward() # 求解梯度
       
       
       gen_img = gen(random_noise)    
       # 判别器输入生成的图片,fake_output是对生成图片的预测
       # 优化的目标是判别器,对于生成器的参数是不需要做优化的,需要进行梯度阶段,detach()会截断梯度,
       # 得到一个没有梯度的Tensor,这一点很关键
       fake_output = dis(gen_img.detach()) 
       # 得到判别器在生成图像上的损失
       d_fake_loss = loss_fn(fake_output, 
                             torch.zeros_like(fake_output))      
       d_fake_loss.backward() # 求解梯度
       
       d_loss = d_real_loss + d_fake_loss # 判别器总的损失等于两个损失之和
       d_optim.step() # 进行优化
       
       g_optim.zero_grad() # 将生成器的所有梯度归0
       fake_output = dis(gen_img) # 将生成器的图片放到判别器中,此时不做截断,因为要优化生成器
       # 生层器希望生成的图片被判定为真
       g_loss = loss_fn(fake_output, 
                        torch.ones_like(fake_output))      # 生成器的损失
       g_loss.backward() # 计算梯度
       g_optim.step() # 优化
       
       # 将损失累加到定义的数组中,这个过程不需要计算梯度
       with torch.no_grad():
           d_epoch_loss += d_loss
           g_epoch_loss += g_loss
     
   # 计算每个epoch的平均loss,仍然使用这个上下文关联器
   with torch.no_grad():
       # 计算平均的loss值
       d_epoch_loss /= count
       g_epoch_loss /= count
       # 将平均loss放入到loss数组中
       D_loss.append(d_epoch_loss.item())
       G_loss.append(g_epoch_loss.item())
       # 打印当前的epoch
       print('Epoch:', epoch)
       # 调用绘图函数
       gen_img_plot(gen, epoch, test_input)

输出

Epoch: 0
在这里插入图片描述
…(省略中间的迭代输出)

Epoch: 19
在这里插入图片描述
总共做了20次的迭代,可以看出,随着迭代次数的增加,生成的图片质量越来越好。

整体代码


import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
import torchvision
from torchvision import transforms

# 对数据做归一化 (-1, 1)
transform = transforms.Compose([
    transforms.ToTensor(),         # 将数据转换成Tensor格式,channel, high, witch,数据在(0, 1)范围内
    transforms.Normalize(0.5, 0.5) # 通过均值和方差将数据归一化到(-1, 1)之间
])

# 下载数据集
train_ds = torchvision.datasets.MNIST('data',
                                      train=True,
                                      transform=transform,
                                      download=True)
                                      
# 设置dataloader
dataloader = torch.utils.data.DataLoader(train_ds, batch_size=64, shuffle=True)

# 返回一个批次的数据
imgs, _ = next(iter(dataloader))

# imgs的大小
imgs.shape

# 输入是长度为 100 的 噪声(正态分布随机数)
# 输出为(1, 28, 28)的图片
# linear 1 :   100----256
# linear 2:    256----512
# linear 2:    512----28*28
# reshape:     28*28----(1, 28, 28)

class Generator(nn.Module): #创建的 Generator 类继承自 nn.Module
    def __init__(self): # 定义初始化方法
        super(Generator, self).__init__() #继承父类的属性
        self.main = nn.Sequential( #使用Sequential快速创建模型
                                  nn.Linear(100, 256),
                                  nn.ReLU(),
                                  nn.Linear(256, 512),
                                  nn.ReLU(),
                                  nn.Linear(512, 28*28),
                                  nn.Tanh()                     # 输出层使用Tanh()激活函数,使输出-1, 1之间
        )
    def forward(self, x):              # 定义前向传播 x 表示长度为100 的noise输入
        img = self.main(x)
        img = img.view(-1, 28, 28) #将img展平,转化成图片的形式,channel为1可写可不写
        return img

## 输入为(1, 28, 28)的图片  输出为二分类的概率值,输出使用sigmoid激活 0-1
# BCEloss计算交叉熵损失

# nn.LeakyReLU   f(x) : x>0 输出 x, 如果x<0 ,输出 a*x  a表示一个很小的斜率,比如0.1
# 判别器中一般推荐使用 LeakyReLU

class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.main = nn.Sequential(
                                  nn.Linear(28*28, 512), #输入是28*28的张量,也就是图片
                                  nn.LeakyReLU(), # 小于0的时候保存一部分梯度
                                  nn.Linear(512, 256),
                                  nn.LeakyReLU(),
                                  nn.Linear(256, 1), # 二分类问题,输出到1上
                                  nn.Sigmoid()
        )
    def forward(self, x):
        x = x.view(-1, 28*28)
        x = self.main(x)
        return x

# 定义设备
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# 初始化模型
gen = Generator().to(device)
dis = Discriminator().to(device)
# 优化器
d_optim = torch.optim.Adam(dis.parameters(), lr=0.0001)
g_optim = torch.optim.Adam(gen.parameters(), lr=0.0001)
# 损失函数
loss_fn = torch.nn.BCELoss()

def gen_img_plot(model, epoch, test_input):
    prediction = np.squeeze(model(test_input).detach().cpu().numpy())
    fig = plt.figure(figsize=(4, 4))
    for i in range(16):
        plt.subplot(4, 4, i+1)
        plt.imshow((prediction[i] + 1)/2) # 确保prediction[i] + 1)/2输出的结果是在0-1之间
        plt.axis('off')
    plt.show()
    
test_input = torch.randn(16, 100, device=device)

 # 保存每个epoch所产生的loss值
D_loss = []
G_loss = []

# 训练循环
for epoch in range(20): #训练20个epoch
    d_epoch_loss = 0 # 初始损失值为0
    g_epoch_loss = 0
    # len(dataloader)返回批次数,len(dataset)返回样本数
    count = len(dataloader)
    # 对dataloader进行迭代
    for step, (img, _) in enumerate(dataloader): # enumerate加序号
        img = img.to(device) #将数据上传到设备
        size = img.size(0) # 获取每一个批次的大小
        random_noise = torch.randn(size, 100, device=device)  # 随机噪声的大小是size个
        
        d_optim.zero_grad() # 将判别器前面的梯度归0
        
        real_output = dis(img)      # 判别器输入真实的图片,real_output是对真实图片的预测结果 
        
        # 得到判别器在真实图像上的损失
        # 判别器对于真实的图片希望输出的全1的数组,将真实的输出与全1的数组进行比较
        d_real_loss = loss_fn(real_output, 
                              torch.ones_like(real_output))      
        d_real_loss.backward() # 求解梯度
        
        
        gen_img = gen(random_noise)    
        # 判别器输入生成的图片,fake_output是对生成图片的预测
        # 优化的目标是判别器,对于生成器的参数是不需要做优化的,需要进行梯度阶段,detach()会截断梯度,
        # 得到一个没有梯度的Tensor,这一点很关键
        fake_output = dis(gen_img.detach()) 
        # 得到判别器在生成图像上的损失
        d_fake_loss = loss_fn(fake_output, 
                              torch.zeros_like(fake_output))      
        d_fake_loss.backward() # 求解梯度
        
        d_loss = d_real_loss + d_fake_loss # 判别器总的损失等于两个损失之和
        d_optim.step() # 进行优化
        
        g_optim.zero_grad() # 将生成器的所有梯度归0
        fake_output = dis(gen_img) # 将生成器的图片放到判别器中,此时不做截断,因为要优化生成器
        # 生层器希望生成的图片被判定为真
        g_loss = loss_fn(fake_output, 
                         torch.ones_like(fake_output))      # 生成器的损失
        g_loss.backward() # 计算梯度
        g_optim.step() # 优化
        
        # 将损失累加到定义的数组中,这个过程不需要计算梯度
        with torch.no_grad():
            d_epoch_loss += d_loss
            g_epoch_loss += g_loss
      
    # 计算每个epoch的平均loss,仍然使用这个上下文关联器
    with torch.no_grad():
        # 计算平均的loss值
        d_epoch_loss /= count
        g_epoch_loss /= count
        # 将平均loss放入到loss数组中
        D_loss.append(d_epoch_loss.item())
        G_loss.append(g_epoch_loss.item())
        # 打印当前的epoch
        print('Epoch:', epoch)
        # 调用绘图函数
        gen_img_plot(gen, epoch, test_input)

参考资料

[1] https://www.bilibili.com/video/BV1xm4y1X7KZ
[2] https://blog.csdn.net/hshudoudou/article/details/126922562?spm=1001.2014.3001.5502

  • 18
    点赞
  • 88
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 5
    评论
GAN(Generative Adversarial Network)是一种生成式深度学习模型,它由两个神经网络组成:一个生成器网络和一个判别器网络。生成器网络可以生成逼真的图像、文本或音频等,而判别器网络则用于区分生成器生成的图像与真实图像的不同之处。两个网络不断地相互对抗、优化,直到生成的图像与真实图像无法区分。 下面是一个用 PyTorch 实现的简单的 GAN 模型: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as dset import torchvision.transforms as transforms from torch.utils.data import DataLoader from torchvision.utils import save_image # 定义生成器网络 class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() self.fc = nn.Sequential( nn.Linear(100, 256), nn.ReLU(), nn.Linear(256, 512), nn.ReLU(), nn.Linear(512, 1024), nn.ReLU(), nn.Linear(1024, 784), nn.Tanh() ) def forward(self, x): x = self.fc(x) return x # 定义判别器网络 class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.fc = nn.Sequential( nn.Linear(784, 512), nn.ReLU(), nn.Linear(512, 256), nn.ReLU(), nn.Linear(256, 1), nn.Sigmoid() ) def forward(self, x): x = self.fc(x) return x # 加载 MNIST 数据集 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=(0.5,), std=(0.5,)) ]) train_dataset = dset.MNIST(root='./data', train=True, transform=transform, download=True) train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True) # 初始化生成器和判别器 G = Generator() D = Discriminator() # 定义优化器和损失函数 G_optimizer = optim.Adam(G.parameters(), lr=0.0002, betas=(0.5, 0.999)) D_optimizer = optim.Adam(D.parameters(), lr=0.0002, betas=(0.5, 0.999)) criterion = nn.BCELoss() # 训练 GAN 模型 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') G.to(device) D.to(device) for epoch in range(100): for i, (images, _) in enumerate(train_loader): batch_size = images.size(0) images = images.view(batch_size, -1).to(device) # 训练判别器 real_labels = torch.ones(batch_size, 1).to(device) fake_labels = torch.zeros(batch_size, 1).to(device) noise = torch.randn(batch_size, 100).to(device) fake_images = G(noise) D_real_outputs = D(images) D_fake_outputs = D(fake_images.detach()) D_real_loss = criterion(D_real_outputs, real_labels) D_fake_loss = criterion(D_fake_outputs, fake_labels) D_loss = D_real_loss + D_fake_loss D_optimizer.zero_grad() D_loss.backward() D_optimizer.step() # 训练生成器 noise = torch.randn(batch_size, 100).to(device) fake_images = G(noise) D_fake_outputs = D(fake_images) G_loss = criterion(D_fake_outputs, real_labels) G_optimizer.zero_grad() G_loss.backward() G_optimizer.step() # 输出损失值 if i % 100 == 0: print(f'Epoch [{epoch+1}/{100}] Batch [{i+1}/{len(train_loader)}] D_loss: {D_loss.item():.4f}, G_loss: {G_loss.item():.4f}') # 保存生成的图像 with torch.no_grad(): noise = torch.randn(64, 100).to(device) fake_images = G(noise).view(64, 1, 28, 28) save_image(fake_images, f'./gan_images/{epoch+1}.png') ``` 在这个例子中,我们使用了 PyTorch 内置的 MNIST 数据集,并定义了一个含有三个全连接层的生成器网络和一个含有两个全连接层的判别器网络。我们采用了 Adam 优化器和二元交叉熵损失函数。在训练过程中,我们不断地交替训练生成器和判别器,并且每完成一个 epoch 就保存一批生成的图像。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

半岛铁子_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值