基于pytorch的GAN网络搭建

本次的主要任务是利用pytorch实现对GAN网络的搭建,并实现对手写数字的生成。GAN网络主要包含两部分网络,一部分是生成器,一部分是判别器。本次采用的数据库还是MNIST数据集,这里对数据的获取不在赘述。

1、生成器

生成器的主要功能是生成我们所需要的样本,这里是28*28的图片。首先生成长度为100的高斯噪声,并且将噪声通过线性模型升维到784维。激活函数采用Relu。

# 定义判别器  #####Generator######使用多层网络来作为判别器
# 输入一个100维的0~1之间的高斯分布,多层映射到784维

class generator(nn.Module):
    def __init__(self):
        super(generator, self).__init__()
        self.gen = nn.Sequential(
            nn.Linear(100, 256),  # 用线性变换将输入映射到256维
            nn.ReLU(True),  # relu激活
            nn.Linear(256, 512),  # 线性变换
            nn.ReLU(True),  # relu激活
            nn.Linear(512, 784),  # 线性变换
            nn.Tanh()  # Tanh激活使得生成数据分布在【-1,1】之间,因为输入的真实数据的经过transforms之后也是这个分布
        )

    def forward(self, x):
        x = self.gen(x)
        return x

2、判别器

识别器的主要功能是分辨真实图片与构造的图片,实际上就是一个二分类问题,这里采用全连接网络提取特征并进行二分类,也可以利用CNN、LSTM等网络进行特征提取。

# 定义判别器  #####Discriminator######使用多层网络来作为判别器
# 将图片利用LeNet网络进行二分类,判断图片是真实的还是生成的
class discriminator(nn.Module):
    def __init__(self):
        super(discriminator, self).__init__()
        self.f1 = nn.Sequential(
            nn.Linear(784, 512),
            nn.LeakyReLU(0.2)
        )
        self.f2 = nn.Sequential(
            nn.Linear(512, 256),
            nn.LeakyReLU(0.2)
        )
        self.out = nn.Sequential(
            nn.Linear(256, 1),
            nn.Sigmoid()
        )

    def forward(self, x):
        x = self.f1(x)
        x = self.f2(x)
        x = self.out(x)
        return x

3、定义损失函数

(1)判别器损失

判别器主要实现对真假样本的分类,因此需要将真的图片判断为真,假的图片判断为假。因此需要分别计算两种情况的损失函数相加。

# ########判别器训练train#####################
# 分为两部分:1、真的图像判别为真;2、假的图像判别为假
# 计算真实图片的损失
real_out = self.D(real_img)  # 将真实图片放入判别器中
d_loss_real = self.criterion(real_out, real_label)  # 得到真实图片的loss
real_scores = real_out  # 得到真实图片的判别值,输出的值越接近1越好
# 计算假的图片的损失
z = Variable(torch.randn(num_img, Config.z_dim)).cuda()  # 随机生成一些噪声
fake_img = self.G(z).detach()  # 随机噪声放入生成网络中,生成一张假的图片。 # 避免梯度传到G,因为G不用更新, detach分离
fake_out = self.D(fake_img)  # 判别器判断假的图片,
d_loss_fake = self.criterion(fake_out, fake_label)  # 得到假的图片的loss
fake_scores = fake_out  # 得到假图片的判别值,对于判别器来说,假图片的损失越接近0越好
# 损失函数和优化
d_loss = d_loss_real + d_loss_fake  # 损失包括判真损失和判假损失
self.d_optimizer.zero_grad()  # 在反向传播之前,先将梯度归0
d_loss.backward()  # 将误差反向传播
self.d_optimizer.step()  # 更新参数

(2)生成器损失

# ==================训练生成器============================
# ###############################生成网络的训练
# 希望生成的图片被认为是真的照片,因此需要假图片对应真label的损失,并且更新生成器的参数

z = Variable(torch.randn(num_img, Config.z_dim)).cuda()  # 得到随机噪声
fake_img = self.G(z)  # 随机噪声输入到生成器中,得到一副假的图片
output = self.D(fake_img)  # 经过判别器得到的结果
g_loss = self.criterion(output, real_label)  # 得到的假的图片与真实的图片的label的loss
# bp and optimize
self.g_optimizer.zero_grad()  # 梯度归0
g_loss.backward()  # 进行反向传播
self.g_optimizer.step()  # .step()一般用在反向传播后面,用于更新生成网络的参数

4、训练模型

import torch
from torchvision import datasets, transforms
import torch.nn as nn
from torch.autograd import Variable
from torchvision.utils import save_image
import os


class Config:
    device = torch.device('cuda:0')
    batch_size = 128
    epoch = 100
    alpha = 3e-4
    print_per_step = 100  # 控制输出
    z_dim = 100


# 定义判别器  #####Discriminator######使用多层网络来作为判别器
# 将图片利用LeNet网络进行二分类,判断图片是真实的还是生成的
class discriminator(nn.Module):
    def __init__(self):
        super(discriminator, self).__init__()
        self.f1 = nn.Sequential(
            nn.Linear(784, 512),
            nn.LeakyReLU(0.2)
        )
        self.f2 = nn.Sequential(
            nn.Linear(512, 256),
            nn.LeakyReLU(0.2)
        )
        self.out = nn.Sequential(
            nn.Linear(256, 1),
            nn.Sigmoid()
        )

    def forward(self, x):
        x = self.f1(x)
        x = self.f2(x)
        x = self.out(x)
        return x


# 定义判别器  #####Generator######使用多层网络来作为判别器
# 输入一个100维的0~1之间的高斯分布,多层映射到784维

class generator(nn.Module):
    def __init__(self):
        super(generator, self).__init__()
        self.gen = nn.Sequential(
            nn.Linear(100, 256),  # 用线性变换将输入映射到256维
            nn.ReLU(True),  # relu激活
            nn.Linear(256, 512),  # 线性变换
            nn.ReLU(True),  # relu激活
            nn.Linear(512, 784),  # 线性变换
            nn.Tanh()  # Tanh激活使得生成数据分布在【-1,1】之间,因为输入的真实数据的经过transforms之后也是这个分布
        )

    def forward(self, x):
        x = self.gen(x)
        return x


class TrainProcess:
    def __init__(self):
        self.data = self.load_data()
        self.D = discriminator().to(Config.device)
        self.G = generator().to(Config.device)

        self.criterion = nn.BCELoss()  # 定义损失函数
        self.d_optimizer = torch.optim.Adam(self.D.parameters(), lr=Config.alpha)
        self.g_optimizer = torch.optim.Adam(self.G.parameters(), lr=Config.alpha)

    @staticmethod
    def load_data():
        transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.5,), (0.5,))  # (x-mean) / std
        ])

        data = datasets.MNIST(root='./data/',
                                    train=True,
                                    transform=transform,
                                    download=True)


        # 返回一个数据迭代器
        # shuffle:是否打乱顺序
        data_loader = torch.utils.data.DataLoader(dataset=data,
                                                   batch_size=Config.batch_size,
                                                   shuffle=True)

        return data_loader

    @staticmethod
    def to_img(x):
        out = 0.5 * (x + 1)
        out = out.clamp(0, 1)  # Clamp函数可以将随机变化的数值限制在一个给定的区间[min, max]内:
        out = out.view(-1, 1, 28, 28)  # view()函数作用是将一个多行的Tensor,拼接成一行
        return out

    def train_step(self):
        # ##########################进入训练##判别器的判断过程#####################
        for epoch in range(Config.epoch):  # 进行多个epoch的训练
            for i, (img, _) in enumerate(self.data):
                num_img = img.size(0)
                # view()函数作用是将一个多行的Tensor,拼接成一行
                # 第一个参数是要拼接的tensor,第二个参数是-1
                # =============================训练判别器==================
                img = img.view(num_img,-1)
                real_img = Variable(img).cuda()  # 将tensor变成Variable放入计算图中
                real_label = Variable(torch.ones(num_img)).cuda()  # 定义真实的图片label为1
                fake_label = Variable(torch.zeros(num_img)).cuda()  # 定义假的图片的label为0

                # ########判别器训练train#####################
                # 分为两部分:1、真的图像判别为真;2、假的图像判别为假
                # 计算真实图片的损失
                real_out = self.D(real_img)  # 将真实图片放入判别器中
                d_loss_real = self.criterion(real_out, real_label)  # 得到真实图片的loss
                real_scores = real_out  # 得到真实图片的判别值,输出的值越接近1越好
                # 计算假的图片的损失
                z = Variable(torch.randn(num_img, Config.z_dim)).cuda()  # 随机生成一些噪声
                fake_img = self.G(z).detach()  # 随机噪声放入生成网络中,生成一张假的图片。 # 避免梯度传到G,因为G不用更新, detach分离
                fake_out = self.D(fake_img)  # 判别器判断假的图片,
                d_loss_fake = self.criterion(fake_out, fake_label)  # 得到假的图片的loss
                fake_scores = fake_out  # 得到假图片的判别值,对于判别器来说,假图片的损失越接近0越好
                # 损失函数和优化
                d_loss = d_loss_real + d_loss_fake  # 损失包括判真损失和判假损失
                self.d_optimizer.zero_grad()  # 在反向传播之前,先将梯度归0
                d_loss.backward()  # 将误差反向传播
                self.d_optimizer.step()  # 更新参数

                # ==================训练生成器============================
                # ###############################生成网络的训练###############################
                # 原理:目的是希望生成的假的图片被判别器判断为真的图片,
                # 在此过程中,将判别器固定,将假的图片传入判别器的结果与真实的label对应,
                # 反向传播更新的参数是生成网络里面的参数,
                # 这样可以通过更新生成网络里面的参数,来训练网络,使得生成的图片让判别器以为是真的
                # 这样就达到了对抗的目的
                # 计算假的图片的损失
                z = Variable(torch.randn(num_img, Config.z_dim)).cuda()  # 得到随机噪声
                fake_img = self.G(z)  # 随机噪声输入到生成器中,得到一副假的图片
                output = self.D(fake_img)  # 经过判别器得到的结果
                g_loss = self.criterion(output, real_label)  # 得到的假的图片与真实的图片的label的loss
                # bp and optimize
                self.g_optimizer.zero_grad()  # 梯度归0
                g_loss.backward()  # 进行反向传播
                self.g_optimizer.step()  # .step()一般用在反向传播后面,用于更新生成网络的参数

                # 打印中间的损失
                if (i + 1) % 100 == 0:
                    print('Epoch[{}/{}],d_loss:{:.6f},g_loss:{:.6f} '
                          'D real: {:.6f},D fake: {:.6f}'.format(
                        epoch, Config.epoch, d_loss.data.item(), g_loss.data.item(),
                        real_scores.data.mean(), fake_scores.data.mean()  # 打印的是真实图片的损失均值
                    ))
                if epoch == 0:
                    real_images = self.to_img(real_img.cpu().data)
                    save_image(real_images, './img/real_images.png')
            fake_images = self.to_img(fake_img.cpu().data)
            save_image(fake_images, './img/fake_images-{}.png'.format(epoch + 1))


if __name__ == "__main__":
    # 创建文件夹
    if not os.path.exists('./img'):
        os.mkdir('./img')
    p = TrainProcess()
    p.train_step()

结果展示:

                 

                   真实样本                                                       训练1个epoch生成的样本

                

         训练50个epoch生成的样本                                        训练100个epoch生成的样本

  • 2
    点赞
  • 43
    收藏
    觉得还不错? 一键收藏
  • 8
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值