强化学习环境配置记录

Anaconda+PyCharm+PyTorch+Gym深度强化学习环境搭建 送新手直接送进炼丹炉_anaconda安装gym-CSDN博客

gym包更新升级到0.26.2版本后炼丹炉的测试代码_warn: you are calling render method without specif-CSDN博客

报错:DeprecationWarning: `np.bool8` is a deprecated alias for `np.bool_`. (Deprecated NumPy 1.24) if not isinstance(terminated, (bool, np.bool8)):显示numpy版本更新后,不再支持np.bool,如果强行使用,会出现警告,但是结果还是正确的,按照提示,只要把np.bool变成np.bool_,警告消失,运行正常,结果和之前一样。

在Pycharm中,你可以使用以下快捷键进行查找操作:
查找类或文件:Ctrl + N
查找方法或函数:Ctrl + Shift + N
查找变量或字段:Ctrl + Shift + F
查找字符串:Ctrl + F

在文件中查找和替换:Ctrl + R
在项目中查找和替换:Ctrl + Shift + R
查找符号(类、方法、变量等):Ctrl + Shift + Alt + N
查找下一个匹配项:F3
查找上一个匹配项:Shift + F3
在当前文件中定位到某一行:Ctrl + G
跳转到定义处:Ctrl + 鼠标左键点击
跳转到声明处:Ctrl + B
跳转到父类或接口:Ctrl + U
跳转到上一次编辑的地方:Ctrl + Shift + Backspace
查找下一个错误或警告:F2
查找上一个错误或警告:Shift + F2
这些快捷键可以帮助你快速查找和定位代码中的各种元素,提高开发效率

报错:WARN: You are calling 'step()' even though this environment has already returned terminated = True. You should always call 'reset()' once you receive 'terminated = True' -- any further steps are undefined behavior. logger.warn(

解决:测试gym的cartPole 出错后的更改-CSDN博客

平衡小车代码:

import gym
env = gym.make('MountainCar-v0', render_mode = 'human')   #由于gym库的版本更新以后,在定义环境时需要在环境名后具体指出render_mode=…,注意必须指出具体的render_mode(渲染模式)
for i_episode in range(10):
    observation = env.reset()
    for t in range(100):
        env.render()
        print(observation)
        action = env.action_space.sample()
        observation, reward, done, info, _ = env.step(action)
    if done:
        print("Episode finished after {} timesteps".format(t+1))
        break
env.close()

摆锤代码:

import gym    # 导入 Gym 的 Python 接口环境包
env = gym.make("CartPole-v1", render_mode = 'human')  # 构建实验环境
for episode in range(10):
    env.reset()               # 重置一个回合
    print("Episode finished after {} timesteps".format(episode))
    for _ in range(100):
        env.render()     # 显示图形界面
        # env.step(env.action_space.sample())
        observation, reward, done, info, _ = env.step(env.action_space.sample())   # 从动作空间中随机选取一个动作,提交动作
        if done:
            break
env.close()    # 关闭环境

<think>好的,我现在需要帮助用户配置一个适用于深度强化学习的conda环境。首先,我需要回顾用户提供的引用内容,特别是引用[2]和[3],因为它们涉及到CUDA、cuDNN的配置以及conda环境的创建。用户的需求是搭建一个适合深度强化学习的conda环境,所以我要整合这些信息,并确保步骤清晰正确。 首先,我应该从conda环境创建开始。根据引用[3],用户需要使用conda create命令来创建新环境,指定Python版本和相关包。比如,conda create --name myenv python=3.8。这里可能需要选择适合深度强化学习Python版本,比如3.8或3.9,因为很多库支持这些版本。 接下来,安装PyTorch或TensorFlow的GPU版本。这里需要引用[2]中提到的CUDA和cuDNN的配置。用户可能不需要单独安装CUDA和cuDNN,因为conda通常会处理这些依赖。比如,安装PyTorch时指定cudatoolkit和cudnn,conda会自动安装兼容的版本。例如,conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia。这可以避免手动安装CUDA的麻烦,确保版本兼容性。 然后,安装深度强化学习的常用库,比如OpenAI Gym、Stable Baselines3、Ray RLlib等。这些可能需要通过pip安装,特别是当conda仓库中没有最新版本时。比如,pip install gym[all] stable-baselines3 ray[rllib]。 此外,需要验证GPU是否可用。用户可以在Python中运行import torch; print(torch.cuda.is_available())来确认。如果返回True,说明配置成功。 还要考虑依赖冲突的问题。conda在安装时可能会解决大部分依赖,但有时需要手动指定版本。比如,numpy的版本可能与其他库冲突,需要固定版本号。 最后,建议用户创建环境时记录所有依赖,比如导出environment.yml文件,方便后续复现。使用conda env export > environment.yml命令。 现在需要检查是否有遗漏的步骤,比如是否需要安装其他工具包,或者是否需要配置环境变量。根据引用[2],正确安装CUDA和cuDNN是关键,但通过conda安装可以简化这一过程。所以可能不需要用户手动配置路径,但需要确保显卡驱动已经安装,因为CUDA依赖驱动。 总结步骤:创建conda环境,安装深度学习框架(GPU版),安装强化学习库,验证GPU,处理依赖,导出环境配置。需要将这些步骤详细列出,并确保命令正确无误。</think>### 深度强化学习 Conda 环境搭建与依赖配置教程 #### 1. 创建 Conda 基础环境 使用以下命令创建名为`drl_env`的虚拟环境,并指定 Python 版本(建议 3.8 或 3.9,兼容性较好): ```bash conda create --name drl_env python=3.8 conda activate drl_env ``` [^3] #### 2. 安装深度学习框架(GPU 版本) **方案一:PyTorch** 通过 Conda 自动安装 CUDA 和 cuDNN 的兼容版本,避免手动配置(需提前安装显卡驱动): ```bash conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia ``` **方案二:TensorFlow** ```bash conda install tensorflow-gpu=2.10 cudatoolkit=11.2 cudnn=8.1 -c conda-forge ``` > **注意**:CUDA/cuDNN 版本需与显卡驱动匹配,例如驱动版本 ≥520 支持 CUDA 11.8[^2]。 #### 3. 安装深度强化学习库 ```bash # 基础工具包 pip install gym[all] matplotlib numpy pandas # 主流算法库 pip install stable-baselines3 ray[rllib] keras-rl2 # 可选:分布式训练 conda install -c conda-forge mpich mpi4py ``` #### 4. 验证 GPU 是否可用 在 Python 中运行以下代码: ```python import torch print(torch.cuda.is_available()) # 输出 True 表示 GPU 可用 ``` 或 TensorFlow 验证: ```python import tensorflow as tf print(tf.config.list_physical_devices('GPU')) ``` #### 5. 处理依赖冲突 若出现版本冲突,可手动指定版本(例如 NumPy): ```bash conda install numpy=1.21 ``` #### 6. 导出环境配置(可选) 保存环境信息以便复现: ```bash conda env export > drl_env.yml ``` --- ### 关键问题与解决方案 1. **CUDA 版本不匹配**:通过 Conda 安装框架时自动匹配 CUDA/cuDNN,无需单独配置。 2. **库兼容性**:优先使用 Conda 源安装(而非 Pip),减少依赖冲突。 3. **性能优化**:安装 `nvidia-apex` 或启用混合精度训练加速计算。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值