SDAE--随读笔记

SDAE是将多个DAE(Denoising Autoencoder)堆叠起来形成的一种算法. 由P. Vincent, Hugo, Larochelle, Y. Bengio等人在Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion一文中进行了详细的阐述.

sDAE(Stacked DAE)
sDAE的思想就是将多个DAE堆叠在一起形成一个深度的架构. 需要注意的是, 只有在训练的时候才会对输入进行腐蚀(加噪), 一旦训练完成, 就不需要在进行腐蚀, 如下图所示

这里写图片描述

一旦sDAE训练完成, 其高层的特征就可以用做传统的监督算法的输入. 当然, 也可以在最顶层添加一层logistic regression层, 然后使用带label的数据来进一步fine tune该深度神经网络, 如下图所示
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值