神经网络反向传播算法公式推导详解

本文详细介绍了神经网络的基本结构,深入探讨了反向传播算法的公式推导,包括损失函数在各层神经元上的误差计算,以及权重和偏置项的导数求解,旨在帮助读者理解神经网络的训练过程。
摘要由CSDN通过智能技术生成

1.   基本结构理解

神经网络的基本结构如下图所示



       神经网络结构理解: 不论神经网络的结构如何复杂,都可以将其理解为一个输入向量到输出的一个函数。将神经网络应用到分类问题上,其目标为:使得训练数据的真实标签与网络中最后一层输出的差值尽可能的小,即损失函数尽可能小。

        神经网络训练: 即通过给神经网络输入不同的训练数据,不停的调整网络中的参数,使得损失函数的值趋于最优。

2.变量表示定义:

(1)  C:损失函数


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值