1. 基本结构理解
神经网络的基本结构如下图所示
神经网络结构理解: 不论神经网络的结构如何复杂,都可以将其理解为一个输入向量到输出的一个函数。将神经网络应用到分类问题上,其目标为:使得训练数据的真实标签与网络中最后一层输出的差值尽可能的小,即损失函数尽可能小。
神经网络训练: 即通过给神经网络输入不同的训练数据,不停的调整网络中的参数,使得损失函数的值趋于最优。
2.变量表示定义:
(1) C:损失函数
神经网络的基本结构如下图所示
神经网络结构理解: 不论神经网络的结构如何复杂,都可以将其理解为一个输入向量到输出的一个函数。将神经网络应用到分类问题上,其目标为:使得训练数据的真实标签与网络中最后一层输出的差值尽可能的小,即损失函数尽可能小。
神经网络训练: 即通过给神经网络输入不同的训练数据,不停的调整网络中的参数,使得损失函数的值趋于最优。
(1) C:损失函数