机器学习笔记day01

1 机器学习概述

1 .1人工智能概述
1 人工智能起源
			图灵测试、达特茅斯会议
2 人工智能三个阶段
		1、1980年代正式形成期
		2、1990-2010年代蓬勃发展期
		3、2012年之后深度学习期
3 人工智能、机器学习、深度学习三者的关系
		机器学习是人工智能的一个实现路径
		深度学习是机器学习的一个方法发展而来
4 主要分支
		1、计算机视觉(人脸识别)
		2、自然语言处理(语言识别、语义识别)
		3、机器人
5 人工智能必备三要素
		数据、算法、计算力
6 gpu与cpu
		gpu:计算密集型
		cpu:IO密集型
1 .2人工智能概述
1 定义
		从数据中自动分析获取模型,并利用模型对未知数据进行预测
2 工作流程
		1、获取数据
		2、数据基本处理
		3、特征工程
		4、机器学习(模型训练)
		5、模型评估
3 获取到的数据集介绍
		1、专有名词:样本、特征、目标值(标签值)、特征值
		2、数据类型构成: 类型一:特征值+目标值(目标值分为是离散还是连续)
					     类型二:只有特征值,没有目标值
		3、数据划分:训练数据(训练集)——构建模型占比0.7-0.8
					测试数据(测试集)——模型评估占比0.2-0.3
4 数据基本处理
		对数据进行缺失值,去除异常值等处理
5 特征工程
		1、定义:把数据转换成机器更容易识别的数据
		2、为什么需要特征工程:数据和特征决定了机器学习的上限,而模型和算法只是通过逼近这个上限而已
		3、包含内容:特征提取、特征预处理、特征降维
6 机器学习
		选择合适的算法对模型进行训练
7 模型评估
		对训练好的模型进行评估
1 .3机器学习算法分类
1 监督学习(有特征值,有目标值)
		目标值连续——回归
		目标值离散——分类
2 无监督学习(仅有特征值)
3 半监督学习
		有特征值,但是一部分数据有目标值,一部分没有
4 强化学习
		动态过程,上一步数据的输出是下一步数据的输入
		四要素:agent、action、environment、reward
1 .4模型评估
1 分类模型评估
		准确率、精确率、召回率、F1-score、AUC指标
2 回归模型评估
		均方根误差(RMSE)相对平方误差(RSE)
		平均绝对误差(MAE)相对绝对误差(RAE)决定系数(R^2)
3 拟合
		欠拟合、过拟合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

废材终结者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值