波束形成MATLAB代码

常规的波束形成方法

y = w*x

x\approx w^Ty

clc;
clear;
close all;

fs = 1000;
c = 150;
N = 128;
f = 100;
lambda = c / f;
d = 0.5 * lambda;
theta = 1: 1: 180;
t = (0:1:1000-1) / fs;

A = zeros(1, length(theta));
A(5) = 5;
A(20) = 4;
A(25) = 5;
A(50) = 3;   % 在这四个方向上有目标
S = zeros(length(theta), length(t));
for theta_i = 1: 1: 180
    S(theta_i, :) = sin(2*pi*f.*t) * A(theta_i);
end
W = zeros(N, length(theta));
for i = 1: 1: 180
    for j = 1: N
        W(j, i) = exp(-2j*pi*f*(j-1)*d*sind(i)/c);  % 阵列流形
    end 
end
p = real(W * S);  % 各阵元的接收信号

figure(1)
for i = 1: N
    i
   plot(p(i, :));
   ylim([-20, 20]);
   pause(0.01)
end
figure(2)
plot(sum(p))

y = (W.' * p);  % 波束形成
y2 = real(y);
y3 = sum(y2, 2);

figure(3)
plot(sum(S, 2));
figure(4)
plot(y3)

 

内容概要:本文将金属腐蚀现象比作游戏角色受到持续伤害(debuff),并采用浓度迁移和损伤方程来建模这一过程。文中首先介绍了浓度迁移的概念,将其比喻为游戏中使角色持续掉血的毒雾效果,并展示了如何利用Numpy矩阵存储浓度场以及通过卷积操作实现浓度扩散。接着引入了损伤方程,用于评估材料随时间累积的损伤程度,同时考虑到材料自身的抗性特性。作者还提供了完整的Python代码示例,演示了如何在一个二维网格环境中模拟24小时内金属表面发生的腐蚀变化,最终得到类似珊瑚状分形结构的腐蚀形态。此外,文章提到可以通过调整模型参数如腐蚀速率、材料抗性等,使得模拟更加贴近实际情况。 适合人群:对材料科学、物理化学感兴趣的科研工作者和技术爱好者,尤其是那些希望通过编程手段深入理解金属腐蚀机制的人群。 使用场景及目标:适用于希望借助数值模拟方法研究金属腐蚀行为的研究人员;可用于教学目的,帮助学生更好地掌握相关理论知识;也可作为工程项目前期评估工具,预测不同条件下金属构件可能遭受的腐蚀损害。 阅读建议:由于文中涉及较多数学公式和编程细节,建议读者具备一定的Python编程基础以及对线性代数有一定了解。对于想要进一步探索该领域的学者来说,可以尝试修改现有代码中的参数设置或者扩展模型维度,从而获得更丰富的研究成果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值