ArcGIS土地利用程度综合指数分析

成图展示:

图片

土地利用程度综合指数

图片

第一步 准备数据

使用的数据为2010年河南省土地利用类型数据与其行政区划县级数据(为了节省操作,这里使用上次实验的部分数据[1],各土地利用类型已被提取)

图片

第二步 面积统计

水域为例

运行ArcToolbox,打开【空间分析工具】,选择【区域分析】里面的【表格显示分区统计】调出界面,进行参数设置。输入栅格或要素区域数据选择河南省行政区划,区域字段选择具有行政区划的具有标识NAME;输入赋值栅格为提取的水域要素;输出表中设置输出路径,应用即可

图片

水域面积分区统计表导出成功,我们打开查看属性表的数据,显示如下,每一个河南省行政区划NAME字段都有相应的面积、数量等要素统计值(注:这里的面积单位为默认的公亩,可自行根据需求最终进行相应转化)

图片

其它土地利用类型操作一致,使用同样的方法导出分区面积统计表

图片

这里我们先可以把行政区划的属性表导出,以dBASE格式保存(dbf)

图片

各类土地利用类型分区面积统计完成

图片

第三步 表转Excel

进行此操作是因为使用导出各土地利用类型属性表为dBASE格式保存(dbf)会导致汉字乱码

水域为例

运行ArcToolbox,打开【转换工具】,选择【Excel】里面的【表转Excel】调出界面,进行参数设置。输入表数据选择导出的水体分区面积表格;输出Excel文件中设置输出路径,应用即可

图片

水域的面积统计表格转化为Excel成

图片

对其它土地利用分区面积统计类型表进行表转Excel

图片

第四步 Excel操作

首先新建一个空的Excel

图片

打开表转Excel的各类土地利用面积统计数据

图片

复制行政区划的Name字段至刚开始创建的新的Excel中

图片

将水域的Name与Area也复制过来(不过有些字段名称不对应,这是因为此区域不存在地物,需要手动调整位置恢复至合适)

图片

调整后显示

图片

对其它土地利用类型Name与Area表格进行同样的操作

图片

删除多余字段(剩余面积字段即可,没有值表示此区域没有此类土地利用地物)

图片

计算总面积

对行的表格进行汇总,点击Excel中的Sum函数即可

图片

图片

拉动计算出的第一行总面积区域至其它行数,数值会自动填充

图片

再复制一份整理好的数据进行比例计算

图片

在Excel中进行粘贴

图片

清空新粘贴里面的数值

图片

选中第一个表格,进行比例计算

图片

公式:面积/总面积

图片

计算出百分比

图片

计算综合强度:赋值见首页

图片

图片

将综合强度另存为(只需要NAME与综合强度统计)

第五步 数据链接

打开河南省行政区划属性表,进行连接操作

【连接数据】面板中进行参数设置。选择该图层中连接将基于的字段为行政区划的NAME字段;在磁盘加载中选择中加载我们制作的综合强度表格;选择此表中要作为连接基础的字段为综合强度中的NAME字段

图片

表格连接成功

图片

导出数据。将连接好的河南省行政区划数据右键选择【数据】/【导出数据】,存为Shp格式即可

对导出的河南省土地利用综合程度指数计算进行符号化。调出其图层的属性,在【符号系统】中选择【数量】/【分级色彩】,按不同等级重分类为5类进行色彩显示

第六步 成图

添加视图地图要素

海量教程、数据、课件资源:树谷资料库资源大全(5月29日更新)

### 处理和转换土地利用图像 在ArcGIS中处理和转换土地利用图像涉及多个步骤,主要包括栅格到矢量的转换、数据叠加分析以及创建土地利用转移图。 #### 栅格转矢量操作 为了将土地利用栅格数据转化为更易于管理和分析的形式,可以采用`Raster to Polygon`工具。此工具位于`Conversion Tools -> From Raster`菜单下[^1]。通过该过程,原本连续分布的土地类别将以离散多边形形式呈现出来,便于后续的空间查询与统计工作。 ```python import arcpy from arcpy import env # 设置环境变量 env.workspace = "C:/data" # 定义输入栅格文件路径及输出Shapefile保存位置 in_raster = "landuse_2020.tif" out_polygon_features = "landuse_polygons.shp" # 执行栅格至面状要素转换命令 arcpy.RasterToPolygon_conversion(in_raster, out_polygon_features, "NO_SIMPLIFY", "VALUE") ``` 这段Python脚本展示了如何调用ArcPy库来实现自动化批量处理任务,其中参数设置决定了最终生成的结果特性——例如是否简化边界形状(`SIMPLIFY`)或是依据哪个字段作为属性传递给新创建的对象(`VALUE`)。 #### 创建时间序列对比图表 对于不同年份间(比如2000年、2010年和2020年)的土地用途变迁状况可视化表达,则需借助于构建独立的数据框架并排列展示各时期的地图层。具体做法是在布局视图内依次插入三个空白画布区域,随后加载对应年度的地类专题地图,并调整其显示样式以突出变化趋势[^2]。 此外,当涉及到长时间跨度内的动态演变研究时,还可以考虑引入专门设计用于评估景观格局特征改变幅度指标体系的方法论支持,如计算动态度指数等定量描述方式辅助决策者理解区域内自然资源开发利用强度及其影响因素。 #### 数据预处理注意事项 值得注意的是,在准备参与上述流程的各项原始资料之前,务必保证它们之间具备一致性的地理参照框架;即所有待比较对象都应投影在同一套坐标系统之上。为此可能需要用到诸如Layer Stack这样的功能模块来进行统一校准作业,期间建议选用适合分类性质的最佳插值算法完成必要的分辨率匹配——这里推荐使用最邻近法(Nearest Neighbor),因为它能够较好地保持原生类别界限而不致引起混淆误差[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值