全球陆地蒸散量数据集(1980-2022年)

定位分析多源集合陆地蒸散量数据集(1980-2022年)

图片

数据介绍

 陆地蒸散发(ET)在地球的水碳循环中起着至关重要的作用,准确估算全球陆地蒸散发对于促进我们对陆地-大气相互作用的理解至关重要。尽管近几十年来开发了许多蒸散发产品,但由于使用了不同的强迫输入和不完善的模型参数,广泛使用的产品仍然存在固有的不确定性。此外,由于缺乏足够的全球原位观测数据,直接评估蒸散发产品并不现实,从而阻碍了这些产品的利用和同化。因此,建立可靠的全球基准数据集和探索蒸散发产品的评估方法至关重要。

  本研究旨在通过以下方法应对这些挑战:(1)提出一种基于对位的方法,该方法考虑了多源数据合并时的非零误差交叉相关性;(2)采用这种合并方法生成分辨率为 0.1°(2000-2020 年)和 0.25°(1980-2022 年)的长期全球每日蒸散发产品,并纳入 ERA5L、FluxCom、PMLv2、GLDAS 和 GLEAM 的输入。由此产生的产品是定位分析多源集合陆地蒸散量数据(CAMELE)。

采集时间1980/01/01  -  2022/12/31
采集地点全球
数据量37.9 GiB
数据格式nc
数据空间分辨率(/米)0.1度,0.25度
数据时间分辨率
坐标系

数据源描述:

  ERA5-Land:https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview

  GLDAS:https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS

  Global Land Evaporation Amsterdam Model 3.7 (GLEAM-3.7):https://www.gleam.eu/

  Penman–Monteith–Leuning version 2 global evaporation model (PMLv2):https://developers.google.com/earth-engine/datasets/catalog/CAS_IGSNRR_PML_V2_v017

  FluxCom:http://fluxcom.org/

  Global in situ observation: FluxNet

数据加工方法:

 本研究对产物的融合包括三个步骤:

  (1)采用配准法(IVD和EIVD)计算所选输入产物的随机误差方差,确定区域最优产品,并设置误差阈值;

  (2)以最小均方误差(MSE)为目标,计算各网格上不同产品的权重;

  (3)根据权重融合产品,得到长序列蒸散量产品。由于 IVD 和 EIVD 是通过结合工具变量回归和扩展定位系统开发的,因此还包括对 TC 和 EC 算法的描述。

数据质量描述:

  CAMELE 在各种植被覆盖类型中表现出良好的性能,并与现场观测数据进行了验证。评估过程得出的皮尔逊相关系数(R)分别为 0.63 和 0.65。此外,比较结果表明,CAMELE 能够有效描述蒸散发的多年线性趋势、平均值和极端值。但是,它有高估季节性的倾向。总之,我们提出了一套可靠的蒸散发数据,有助于理解水循环的变化,并有可能作为各种应用的基准。

作者简介

数据贡献者:杨汉波

元数据作者:杨汉波  

数据管理者:杨汉波

数据下载

数据分享:全球陆地蒸散量数据集(1980-2022年)

### 处理气象或气候模型中关于潜在蒸发的netCDF文件 #### 准备工作 为了有效地处理与潜在蒸发相关的 netCDF 文件,需要安装一些必要的 Python 库。这些库包括 `netCDF4` 和 `xarray`,它们提供了读取和操作 NetCDF 数据的强大功能。 ```bash pip install netCDF4 xarray matplotlib pandas ``` #### 加载NetCDF文件 使用 `xarray` 可以方便地加载和查看 NetCDF 文件的内容: ```python import xarray as xr # 打开NetCDF文件 ds = xr.open_dataset('path_to_your_file.nc') # 查看数据集基本信息 print(ds.info()) ``` 通过上述命令可以获取有关数据集中变的信息,这有助于确认哪些变对应于潜在蒸发[^2]。 #### 提取特定时间范围内的潜在蒸散数据 如果想要提取某个时间段内(例如 2081-2100 )的数据,则可以根据时间维度进行切片: ```python evapotranspiration_future = ds['variable_name'].sel(time=slice('2081', '2100')) ``` 这里 `'variable_name'` 需要替换为实际代表潜在蒸发的变名称,在提供的资料中有提到包含多个变如温度、气压、辐射等,其中可能就包含了潜在蒸发的相关字段。 #### 使用Delta方法调整未来预测值 基于 Delta 方法的概念,可以通过计算当前时期与历史时期的差异,并将此差异加到未来的模拟结果上来得到更贴近实际情况的结果: ```python # 假设我们已经有了历史期(historical_period)和现代期(modern_period)两个相同长度的时间序列 delta_change = modern_period.mean() - historical_period.mean() # 将这个变化应用到未来的估计上 adjusted_evapotranspiration_future = evapotranspiration_future + delta_change ``` 这种方法假设气候变化的影响在未来会持续下去,即所谓的“稳定化假说”,这是 Delta 方法的核心思想之一[^1]。 #### 绘制图表展示结果 最后,利用 Matplotlib 或 Seaborn 等可视化工具绘制图形可以帮助更好地理解所得出的趋势和发展情况: ```python import matplotlib.pyplot as plt plt.figure(figsize=(10,6)) adjusted_evapotranspiration_future.plot() plt.title('Adjusted Future Evapotranspiration') plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值