全球城市建成区范围及建成区内不透水面和绿地数据集(2000、2010、2020)

图片

数据介绍

中科院地理所匡文慧副研究员发布:全球城市建成区范围及建成区内不透水面和绿地数据集(2000、2010、2020)

为了精准客观地刻画人类城乡建设活动下垫面状况,实现全球城市扩展与土地覆盖变化的遥感监测,作者构建了等级尺度的城市下垫面结构组分制图原理与方法,以Landsat TM/ETM+ /OLI为主要数据源,辅以HJ-1A/B、GF、ZY-3、DMSP/OLS、NPP/VIIRS等数据,应用Google Earth Engine平台和机器学习方法,研发了2000年、2010年和2020年十年尺度全球城市建成区范围及建成区内不透水面和绿地数据集,并利用高分辨率遥感影像对数据精度进行了抽样评估。结果表明,全球城市边界制图精度均值为91.20%;城市不透水面制图验证的相关系数(R)和均方根误差(RMSE)均值分别为0.92和13%;城市绿地空间制图的R和RMSE均值分别为0.91和13%。本数据集内容包括2000、2010和2020年三个年度全球分大洲的以下数据:(1)建成区范围数据;(2)建成区内不透水面分布数据;(3)建成区内绿地分布数据。数据集空间分辨率为250 mx250 m,数据存储格式为.tif和.txt,数据集由55个数据文件组成,数据量为3.25 GB(压缩为1个文件,72.8 MB)。基于该数据集的研究成果发表在《Science Bulletin》2021年第66卷第4期。

参考文献:

[1] Kuang, W. H. Mapping global impervious surface area and green space within urban environments [J]. Science China Earth Sciences, 2019, 62(10): 1591-1606.
[2] Kuang, W. H. 70 years of urban expansion across china: trajectory, pattern, and national policies [J]. Science Bulletin, 2020, 65(23): 1970-1974.
[3] Kuang, W. H., Liu, J. Y., Zhang, Z. X., et al. Spatiotemporal dynamics of impervious surface areas across china during the early 21st century [J]. Chinese Science Bulletin, 2013, 58(14): 1691-1701.
[4] Kuang, W. H., Zhang, S., Li, X. Y., et al. A 30 m resolution dataset of China’s urban impervious surface area and green space, 2000–2018 [J]. Earth System Science Data, 2021, 13(1): 63-82.

相关信息

数据格式:TIF

数据容量:3.25G

数据时间范围:2000年、2010年、2020年

数据作者:匡文慧,窦银银,陆灯盛,杜国明

中国科学院地理科学与资源研究所,北京100101

图片

关注"树谷Online",后台回复关键字“20250114”,查看数据下载方法!

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值