1.
坚持党的基本路线不动摇,关键是
( )
。
A
、坚持社会主义道路不动摇
B
、坚持改革开放不动摇
C
、坚持中国共产党的领导不动摇
D
、坚持以经济建设为中心不动摇
2.
需求公司是数据标注规则的
( )
。
A
、终结者
B
、桥梁
C
、起始者
D
、定制者
3.
以下
( )
不是人工智能发展过程中的重要事件。
A
、
1950
年“图灵测试”的提出
B
、
1997
年深蓝战胜国际象棋世界冠军
C
、
1980
年专家系统诞生
D
、
2010
年苹果第四代手机
iPhone 4
发布
4.
下面不属于容灾解决方案的是
( )
。
A
、备份解决方案
B
、主备双活容灾解决方案
C
、双活容灾解决方案
D
、两地三中心容灾解决方案
5.( )
是计算机中用来表示存储容量大小的基本单位。
A
、字
B
、位
C
、比特
D
、字节
6.
数据的表现形式可以是数字、文字还可以是
( )
等。
A
、系统
B
、图片
C
、程序
D
、软件
7.
职业道德与企业发展密切相关,以下说法正确的是
( )
。
A
、职业道德与企业文化没有关系
B
、职业道德可以增强企业竞争力
C
、职业道德可以由企业自己决定
D
、职业道德对企业发展具有重要价值
8.
定比等级的数据也是
( )
。
A
、定量
B
、定类
C
、文本
D
、图表
9.( )
是计算机科学和语言技术中的一个主题,目的是通过数学算法来识别人类手势。
A
、数据识别
B
、手势识别
C
、文本识别
D
、人脸识别
10.( )
是用另一种语言对原作进行改写和重写。
A
、翻译
B
、编辑
C
、合成
D
、拼接
11.
行人标注筛选是从输入的图像中挖掘出
( )
的属性信息。
A
、行人
B
、车辆
C
、司机
D
、儿童
12.
常见的数据标注工具的数据标注结果导出格式不包括
( )
。
A
、
CSV
B
、
XML
C
、
JSON D
、
MP4
13.
爬虫技术支持
( )
等形式的数据的采集。
A
、电脑
B
、图片
C
、硬件
D
、网络
14.( )
包括数据质量控制和数据治理。
A
、数据采集
B
、数据清洗
C
、数据集成
D
、数据质量检查
15.
数据分类就是把具有
( )
的数据归并在一起。
A
、固有特征
B
、特有属性
C
、共同属性
D
、其他属性
16.( )
方法最适合深度学习模型实现异常检测。
A
、支持向量机(
SVM
)
B
、
K-
最近邻算法(
KNN
)
C
、随机森林(
Random Forest
)
D
、卷积神经网络(
CNN
)
17.
以下
( )
是人脸识别中的步骤。
A
、手势识别
B
、数据识别
C
、人脸图像采集
D
、文本识别
18.
机器学习从不同的角度,有不同的分类方式,以下
( )
不属于按系统学习能力分类的
类别。
A
、监督学习
B
、无监督学习
C
、弱监督学习
D
、函数学习
19.
数据采集的常见误差来源有
( )
。
A
、系统误差、随机误差和测量误差
B
、选择误差、测量误差和数据处理误差
C
、调查误差、测量误差和数据处理误差
D
、系统误差、随机误差、测量误差和数据处理误差
20.
文本类型的数据结果是
( )
内容。
A
、格式
B
、数量
C
、标签
D
、特征
21.
人工神经网络模仿
( )
,由许多人工神经元组成。
A
、猩猩大脑
B
、人类大脑
C
、鲸鱼大脑
D
、鲨鱼大脑
22.
以下
( )
不属于数据采集的步骤。
A
、确定研究问题并设计调查方案
B
、对收集到的数据进行编码和整理
C
、对数据进行可视化以探索其分布
D
、分析数据并得出结论
23.
在计算机语言里面,
( )
是对内存位置的一个抽象表达方式。
A
、数字
B
、数据类型
C
、文本
D
、图形
24.
机器学习训练图像识别是根据
( )
进行的,所以对于图像标注的质量标准也是根据像
素点位判定。
A
、边框
B
、颜色
C
、大小
D
、像素点
25.
数据是对现实世界的事务采用计算机能够识别,储存和
( )
的形式进行描述的符的集
合。
A
、采集
B
、处理
C
、保存
D
、记录
26.
去掉噪声属于
( )
。
A
、数据预处理
B
、文本分析
C
、模式识别
D
、模型构建
27.
视频数据分类有助于
( )
。
A
、增加搜索时间
B
、提升用户体验
C
、隐藏商业价值
D
、增加工作量
28.
定类等级的数据只按
( )
分类。
A
、数据大小
B
、文件大小
C
、句子长度
D
、类别名称
29.( )
指的是从数据的真实性与精确性角度检查资料。
A
、准确性审核
B
、在线数据
C
、离线数据
D
、实时数据
30.
下面属于实体识别的是
( )
。
A
、模型构建
B
、文件整理
C
、对象匹配
D
、数据挖掘
31.( )
解决数据不一致性和冲突问题。
A
、对数据进行清洗和处理,去除重复和错误数据
B
、使用统一样本选择标准和数据处理方法,保证数据的一致性
C
、对不同数据源的数据进行对比和整合,消除冲突和不一致性
D
、以上都是
32.
以下
( )
方法常用于非结构化数据的采集。
A
、数据库查询
B
、网络爬虫
C
、
API
接口
D
、
Excel
表格
33.
为了解决如何模拟人类的感性思维,例如视觉理解、直觉思维、悟性等,研究者找到一个
重要的信息处理的机制是
( )
。
A
、专家系统
B
、人工神经网络
C
、模式识别
D
、智能代理
34.
下列
( )
不是人工智能的研究领域。
A
、机器证明
B
、模式识别
C
、人工生命
D
、编译原理
35.1997
年
5
月
12
日,轰动全球的人机大战中,“更深的蓝”战胜了国际象棋之子卡斯帕罗
夫,这是
( )
。
A
、人工思维
B
、机器思维
C
、人工智能
D
、机器智能
36.
数据清理的主要任务是
( )
。
A
、去掉数据中的噪声,纠正不一致。
B
、将多个数据源合并成一致的数据存储,构成一个完整 的数据集,如数据仓库。
C
、通过聚集、删除冗余属性或聚类等方法来压 缩数据。
D
、将一种格式的数据转换为另一格式的数据。
37.
下面属于实体识别的是
( )
。
A
、模型构建
B
、文件整理
C
、对象匹配
D
、数据挖掘
38.
有些算法对数据的形式有一定的要求,需要对原始数据进行
( )
。
A
、数据提取
B
、数据合并
C
、数据清洗
D
、数据变换
39.( )
包含人脸检测与属性分析、人脸对比、人脸搜索等。
A
、人脸识别
B
、数据挖掘
C
、机器学习
D
、深度学习
40.
人工智能应用研究的两个最重要最广泛领域为
( )
。
A
、专家系统、自动规划
B
、专家系统、机器学习
C
、机器学习、智能控制
D
、机器学习、自然语言理解
41.
一般来讲,下列语言属于人工智能语言的是
( )
。
A
、
VJ B
、
C# C
、
Foxpro
D
、
LISP
42.
以下
( )
不是人工智能的一个重要应用领域。
A
、金融领域
B
、医疗领域
C
、教育领域
D
、娱乐领域
43
人工智能的核心是
( )
。
A
、机器学习
B
、大数据
C
、算法
D
、深度学习
44.
数据去重的方法有
( )
。
A
、人工去重
B
、基于哈希函数的去重
C
、基于特征的去重
D
、以上都是
45.
生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。
下列技术不属于生物特征识别技术的是
( )
。
A
、人脸识别
B
、
3D
识别
C
、虹膜识别
D
、声纹识别
46.
不是人工智能的三大学派的是
( )
。
A
、符号学派
B
、连接学派
C
、行为学派
D
、统计学派
47.
通过一组符号及其组合来描述事物的是
( )
。
A
、数据
B
、信息
C
、知识
D
、文字
48.
数据增强的目的是
( )
。
A
、提高模型性能
B
、增加数据多样性
C
、减少数据噪声
D
、以上都是
49.AI
是
( )
的英文缩写。
A
、
Automatic Intelligence
B
、
Artificial Intelligence
C
、
Automatic Information D
、
Artificial Information
50.MIT
教授
Tomaso Poggio
明确指出,过去
15
年人工智能取得的成功,主要是因为
( )
。
A
、计算机视觉
B
、语音识别
C
、博弈论
D
、机器学习
51.( )
是数据的基本单位。
A
、数据项
B
、集合
C
、数组
D
、组合项
52.
数据集成涉及是数据值冲突的
( )
。
A
、文本分析
B
、视频分析
C
、检测与处理
D
、动画编辑
53.
从环境导入数据后,
( )
需要对其进行预处理。
A
、信息处理层
B
、鼠标
C
、显示器
D
、声卡
54.
日志的作用是
( )
。
A
、预测未来要发生的事件
B
、保留数据现场
C
、节约数据成本
D
、进行数据备份
55.
以下
( )
是数据交付的内容。
A
、数据清洗
B
、数据平滑
C
、数据质量
D
、数据错误
56.
下面是数据质量的特性的是
( )
。
A
、不可解释性
B
、准确性
C
、不完整性
D
、不准确性
57.( )
填充缺失值费时费力,不适用数据集大的情况。
A
、人工
B
、回归分析
C
、全局常量
D
、均值填充
58.
在训练一个目标检测模型时,
( )
方法能够快速准确地检测出多个目标。
A
、使用更深的神经网络模型
B
、对数据进行预处理,例如使用数据增强技术
C
、增加训练数据的数量
D
、对模型进行更严格的正则化
59.( )
是智能时代的根基,往往都是五花八门、杂乱无章的。
A
、视频
B
、图片
C
、文字
D
、数据
60.
下面属于数据预处理的是
( )
。
A
、数据缺失值处理
B
、文本分析
C
、分类预测
D
、模式识别
61.
网页数据可能包含文本数据、
( )
等。
A
、图片数据
B
、玩具实体模型
C
、实体书
D
、纸质书
62.
下列
( )
操作不属于数据集的制作。
A
、图片获取
B
、图片标注
C
、保存成一致的格式
D
、清洗数据集
63.
热爱并以恭敬严肃的态度对待自己的本职工作是
( )
的表现
A
、遵纪守法
B
、爱岗敬业
C
、团结协作
D
、勤奋进取
64.
采集到的数据存在数据质量差、
( )
等问题。
A
、数据格式杂乱
B
、数据可信度强
C
、数据准确性高
D
、数据时效性强
65.
对数据进行汇总和聚集称为
( )
。
A
、分类
B
、聚集
C
、光滑
D
、离散化
66.
一人所属照片清洗工具通常是一种
( )
标注工具,判断是否为同一个人。
A
、二分类
B
、三分类
C
、多分类
D
、简单
67.
经常与黑客软件配合使用的是
( )
。
A
、程序
B
、蠕虫
C
、系统
D
、木马
68.
在训练模型之前,需要把先标注好的数据进行
( )
。
A
、替换
B
、分类
C
、删除
D
、更新
69.
下列
( )
不属于数据标注流程的是。
A
、数据采集
B
、数据清洗
C
、数据标注
D
、数据删除
70.
下面属于数据维度缩减的是
( )
。
A
、数据特征转换
B
、模型结构转换
C
、程序逻辑转换
D
、文本分析
71.
按照学习方式的不同,可以将机器学习分为以下
( )
类。
A
、聚类
B
、无监督学习
C
、监督学习
D
、弱监督学习
72.
语音识别技术,按词汇量大小进行分类,可以分为
( )
。
A
、小词汇量
B
、中词汇量
C
、大词汇量
D
、超大词汇量
73.
下列
( )
属于常用的分类算法。
A
、
SVM
B
、
SVR
C
、
kNN
D
、
DBSCAN
74.
人工智能技术可以在
( )
方面与元宇宙技术相结合。
A
、使用人工智能技术来模仿和取代人类行为。
B
、使用人工智能技术处理元宇宙产生的海量且复杂的数据。
C
、使用人工智能解决芯片的计算能力。
D
、使用人工智能技术在增强现实和虚拟现实中创造更智能、更身临其境的世界。
75.
以下选项中是
Python
保留字的选项是
( )
。
A
、
string
B
、
not C
、
del D
、
pass
76.
大数据有
( )
特征。
A
、
Value
(价值密度低
) B
、
Velocity(
速度快
)
C
、
Volume(
数据量大
) D
、
Veriety(
类型多
)
77.
真正的通用人工智能系统具有把握
( )
的能力。
A
、跨领域
B
、专业性
C
、局部性
D
、全局性
78.
机器学习一般分
( )
和
( )
。
A
、强化学习
B
、非监督学习
C
、深度学习
D
、监督学习
79( )
技术是
RCNN
采用而
FasterRCNN
没有使用。
A
、使用
ROIpooling B
、使用
MLP
进行分类与回归预测
C
、
SVM
分类
D
、使用
SelectiveSearch
输出候选框
80.Relu
激活函数的优点是
( )
。
A
、计算方便,计算速度快,求导方便
B
、输出不是以
0
为中心
C
、解决了梯度消失、爆炸的问题
D
、加速网络训练
判断对错
81.
特征转换就是用更少的列来解释数据点,并且效果不变,甚至更好。
82.
噪声数据只能自然产生不能人工形成。
83.
删除缺失值的行和填充缺失值是处理缺失值的主要技巧。
84.
数据预处理的主要流程包括数据清理、数据集成、数据变换和数据规约。
85.
数据规约一定不会减少原数据的信息量。
86.Python
只能创建一维数组。
87.Windows
系统不能进行数据爬虫。
88.
数据清洗是数据预处理中重要的任务。
89.
中文分词只局限于中文应用。
90.
数据分类就是把具有某种共同属性或特征的数据归并在一起。
91.
所有原始图片数据标注之后,可以得到标注好的图片和对应的
mp4
数据文件。
92.
数据类型是语言的抽象原子概念,可以说是语言中最基本的单元定义。
93.
自然语言处理是一门融语言学、计算机科学、心理学于一体的科学。
94.
只能阅卷、机器阅读理解不能运用自然语言处理技术。
95.
文本标注是一个复杂的过程。
96.
数据标注规则是为了完成数据标记项目,满足公司需求。
97.
文本分类是指将文本按照内容的不同判别到一个或多个预先确定的文本类别之中的过程。
98.
文本实体数据是不能运算的图片集合。
99.
人脸解析,是将人的头部包含人脸五官构成进行分解,得到头发、面部皮肤、眼睛、眉毛、
鼻子、嘴、耳朵等区域。
100.
语义标注的质量标准是标注出词语或语句的语义。
1.
人工智能中通常把
( )
作为衡量机器智能的准则。
A
、图灵机
B
、图灵测试
C
、中文屋思想实验
D
、人类智能
2.
在数据表中,表的“列”称为
( )
。
A
、数据
B
、字段
C
、记录
D
、大数据
3.
日常生活中,指纹扫描打卡考勤、虹膜扫描,应用到了人工智能中的
( )
。
A
、机器翻译技术
B
、机器翻译
C
、虚拟现实
D
、模式识别
4.
文本数据一般分为字符和
( )
。
A
、字节
B
、字根
C
、字符串
D
、字母
5.
大数据具有以下特征
(