傅里叶变换及其实现(MATLAB)

傅立叶变换

傅立叶变换是一种常见的分析方法,傅立叶变换将满足一定条件的函数表示为一些函数的加权和(或者积分)。可以分为四个类别:
1. 非周期连续性信号
对应于傅里叶变换,频域连续非周期
2. 周期性连续性信号
对应于傅立叶级数,频域离散非周期
3. 非周期离散信号
对应于DTFT(离散时间傅立叶变换),频域连续周期
4. 周期性离散信号
对应于DFT(离散时间傅立叶变换),频域离散周期

傅立叶级数

首先从傅立叶级数开始分析,傅立叶级数是将一个信号在一组正交基上进行分解的体现。

x(t)=k=+akejkω0t x ( t ) = ∑ k = − ∞ + ∞ a k e j k ω 0 t

ak=1TT/2T/2x(t)ejkω0tdt a k = 1 T ∫ − T / 2 T / 2 x ( t ) e − j k ω 0 t d t

连续时间傅立叶变换

ω0=2πT ω 0 = 2 π T ,当 T T → ∞ 时, ω00 ω 0 → 0
X(jω) X ( j ω ) Tak T a k 的包络,用 kω0ω k ω 0 → ω ,推出:
正变换

X(jω)=+x(t)ejkω0tdt X ( j ω ) = ∫ − ∞ + ∞ x ( t ) e − j k ω 0 t d t

其中 ak a k X(jω) X ( j ω ) 的等距离采样, ak=1TX(jkω0) a k = 1 T X ( j k ω 0 )
所以当 T T → ∞ 时, ω00 ω 0 → 0 ,可以推出:
x(t)=akejkω0t=1TX(jkω0)ejkω0t=12πX(jkω0)ejkω0tω0 x ( t ) = ∑ a k e j k ω 0 t = ∑ 1 T X ( j k ω 0 ) e j k ω 0 t = ∑ 1 2 π X ( j k ω 0 ) e j k ω 0 t ω 0
极限时转变为积分:
逆变换
x(t)=12π+X(jω)ejωtdω x ( t ) = 1 2 π ∫ − ∞ + ∞ X ( j ω ) e j ω t d ω

离散时间傅立叶变换

离散时间傅立叶变换在频域上是连续的,但由于计算机无法表示无限长的时间片段,已经无法表示全部频率,一般取一定频域的分量。
正变换

X(ejω)=n=+x[n]ejωn X ( e j ω ) = ∑ n = − ∞ + ∞ x [ n ] e − j ω n

逆变换
x[n]=12π2πX(ejω)ejωndω x [ n ] = 1 2 π ∫ 2 π X ( e j ω ) e j ω n d ω

离散傅立叶变换

只有离散傅立叶变换在频域和时域都是离散的,即计算机可以处理的,因此DFT是可以实际进行编程并实用的。DFT的信号首先要进行截断,因为能处理的信号必须是有限的;然后对信号进行采样,对频谱进行离散化。
正变换

X(k)=n=0N1x(n)ej2πNnk X ( k ) = ∑ n = 0 N − 1 x ( n ) e − j 2 π N n k

逆变换
x(n)=1Nk=0N1X(k)ej2πNnk x ( n ) = 1 N ∑ k = 0 N − 1 X ( k ) e j 2 π N n k

二维傅立叶变换

F(u,v)=x=0M1y=0N1f(x,y)ej2π(ux/M+vy/N) F ( u , v ) = ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) e − j 2 π ( u x / M + v y / N )

f(x,y)=1MNx=0M1y=0N1F(u,v)ej2π(ux/M+vy/N) f ( x , y ) = 1 M N ∑ x = 0 M − 1 ∑ y = 0 N − 1 F ( u , v ) e j 2 π ( u x / M + v y / N )

傅立叶变换实现

只有离散傅里叶变换才可以实现,在MATLAB中实现有fftfft2进行傅里叶变换,同样可以手动进行变换。

一维傅立叶变换

基于FFT

%  xn是信号,n是坐标,N是点数
%  N =8;
%  n = [0:1:N-1];
%  xn = 0.5.^n;        % 指数信号
function [] = DFTusefft(xn,n,N)
    figure(1);
    Xk=fft(xn,N);      % 傅立叶变换
    subplot(211);
    stem(n,xn);
    title('原信号');

    subplot(212);
    stem(n,abs(Xk));
    title('FFT变换')
end

这里写图片描述

DFT公式

function [] = DFT(xn,n,N)
    Xk = zeros(1,N);    
    for k=1:N
        sn =0.0;
        for i=1:N
            sn = sn+xn(i)*exp(-j*2*pi*i*k/N);
        end
        Xk(k) = sn;
    end
    figure(2);
    subplot(211);
    stem(n,xn);
    title('原信号');

    subplot(212);
    stem(n,abs(Xk));
    title('DFT')
end

这里写图片描述

DTFT
由于DTFT的频域是连续的而且是无穷的,当我们选择的最高频域足够高时,可以基本代表信号特征,可以进行编程。

function [] = testDTFT(xn,n,N)
    figure(3);
    w=[-800:1:800]*4*pi/800;     %频域共-800----+800 的长度(本应是无穷,高频分量很少,故省去)    
    w = [-N/2:1:N/2]*4*pi*2/N;
    X=xn*exp(-j*(n'*w));         %求dtft变换,采用原始定义的方法,对复指数分量求和而得
    subplot(211)
    stem(n,xn);
    title('原始信号(指数信号)');
    subplot(212);
    plot(w/pi,abs(X));
    title('DTFT变换')
end

这里写图片描述

二维傅立叶变换

原始图像

这里写图片描述

使用fft2

function [] = imagefft()
    I=imread('lenna.jpg');
    I=rgb2gray(I);
    I=im2double(I);
    F=fft2(I);
    F=fftshift(F);
    F=abs(F);
    T=log(F+1);
    figure(4);
    imshow(T,[]);
end

这里写图片描述

使用二维傅立叶变换公式
速度很慢

function [] = imageDFT()
    I=imread('lenna_s.jpg');
    I=rgb2gray(I);
    I=im2double(I);
    [x,y] = size(I);
    ans = ones(x,y);
    com = 0+1i;
    for u =1:x
        for v= 1:y
            sn =0;
            for i=1:x                
                for j=1:y
                    sn = sn+I(i,j)*exp(-com*2*pi*(u*i/x+v*j/y));
                end
            end
            ans(u,v) = sn;
        end
    end
    F=fftshift(ans);
    F= abs(F);
    F=log(F+1);
    figure(5);
    imshow(F,[]);
end

这里写图片描述

优化二维傅立叶变换
先按列进行傅里叶变换,再对行进行傅立叶变换,简化计算。

function [] = imageDFT2()
    I=imread('lenna.jpg');
    I=rgb2gray(I);
    I=im2double(I);
    [x,y] = size(I);
    Ax = ones(x,y);
    ans = ones(x,y);
    com = 0+1i;
    % 对每一列进行DFT
    for k =1:x        
        for m=1:y
            sn =0;
            for n =1:x
                sn =sn + I(n,m)*exp(-com*2*pi*k*n/x);
            end
            Ax(k,m) = sn;
        end
    end
    % 对每一行进行DFT
    for l =1:y
        for k =1:x
            sn =0;
            for m=1:y
                sn = sn+Ax(k,m)*exp(-com*2*pi*l*m/y);
            end
            ans(k,l) = sn;
        end
    end    
    F=fftshift(ans);
    F= abs(F);
    F=log(F+1);
    figure(6);
    imshow(F,[]);
end

这里写图片描述

优化二维傅立叶变换
将按列进行傅里叶变换中使用DFT改为使用fft,速度提升很快。

function [] = imageDFT2fft()
    I=imread('lenna.jpg');
    I=rgb2gray(I);
    I=im2double(I);
    [x,y] = size(I);
    Ax = ones(x,y);
    ans = ones(x,y);
    com = 0+1i;
    % 对每一列进行DFT  
    for m=1:y
        Ax(:,m) = fft(I(:,m));
    end
    % 对每一行进行DFT    
    for k=1:x
        ans(k,:) = fft(Ax(k,:));
    end
    F=fftshift(ans);
    F= abs(F);
    F=log(F+1);
    figure(7);
    imshow(F,[]);
end

这里写图片描述

github地址

如有错误,欢迎指出~

### 关于Cadence 17.2版本中Pspice的教程 #### 安装指南 对于希望安装Cadence PSpice 17.2版本的用户来说,需注意几个关键步骤。当点击安装Cadence软件时,应指定添加安装包路径以及设定不含空格和汉字字符的安装路径[^1]。完成基础软件部署后,还需通过加入Hotfix文件的方式安装必要的更新补丁。最后,在一切设置妥当之后,务必记得重启计算机以使更改生效。 #### 绘制原理图 一旦上述准备工作就绪,则可以在重新启动后的环境中利用OrCAD Capture CIS工具着手绘制所需的电路原理图。此阶段涉及的具体操作包括但不限于元件的选择、放置及其间的连接构建等动作。 #### 创建自定义电路模块 针对那些想要进一步定制化工作流或者提高效率的技术人员而言,掌握如何基于个人需求创建专属的电路组件显得尤为重要。在Cadence PSpice环境下,这意呸着能够把一系列预设好的子电路打包成独立单元以便重复调用或分享给团队成员。具体实现过程涵盖了从草稿构思到最后成品导出的一系列环节[^2]。 #### 设计流程概览 在整个电子设计自动化领域里,由概念验证直至最终产品成型往往遵循一套既定的工作模式。对于采用Cadence平台开展工作的工程师们来讲,这套方法论通常始于案例研究进而过渡至详尽的设计实施;期间会经历诸如原理图表绘、错误检测修正、性能测试评估等多个重要节点直到所有目标达成为止[^3]。 #### 原理图设计概述 深入探讨一下项目结构的话就会发现,“Design Resources”部分主要负责存储整个项目的配置信息。“Outputs”则用于汇总各类中间产物或是终期报告文档。“Referenced Projects”允许设计师轻松关联其他辅助性的外部资料库从而促进跨部门协作交流活动顺利展开。值得注意的是如果当前任务涉及到仿真的话那么这里还会额外显示出专门用来支持此类作业的相关条目——即所谓的“PSpice Resources”。 ```python # Python代码示例仅作为装饰用途,并不实际参与解释说明逻辑 def example_function(): pass ```
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值