实证 Stata 代码命令汇总

实证 Stata 代码命令汇总

前段时间学习stata整理的笔记 ,参考资料stata统计分析从入门到精通和其他大佬分享的杂七杂八的内容 仅供个人学习 参考使用

一、数据导入和管理

(一)数据导入

  • 清除内存中的所有现有数据:clear
  • 设置工作路径(根据你的文件位置进行调整):cd "C:\Desktop\实证代码命令大全"
  • 从 Excel 文件导入数据:import excel "example.xlsx", firstrow
  • 从 CSV 文件导入数据:import delimited "example.csv", delimiter(",")
  • 从 Stata 文件(.dta 格式)导入数据:use "example.dta", clear
  • 检查导入的数据:describe list in 1/5

(二)数据导出

  • 导出数据到 Excel 文件:export excel using "exported_data.xlsx", firstrow(variables)
  • 导出数据到 CSV 文件:export delimited using "exported_data.csv", delimiter(",")
  • 保存为 Stata 格式的数据文件:save "exported_data.dta", replace

二、数据的处理

(一)生成新变量

  • gen new_var = var1 * var2
  • gen new_var = ln(var)

(二)格式转换

  • 将字符串日期转换为 Stata 日期:gen date_var = date(date_string, "DMY")
  • 年份生成:gen year=real(substr("统计日期", 1, 4))
  • 字符转为数字格式:destring year, replace

(三)缺失数据

  • 如果变量 var1 和 var2 的任何行存在缺失值,则删除该行:drop if missing(varl) | missing(var2)
  • 或者通过循环删除变量缺失的数据:
foreach i in 变量 1 变量 2 变量 3 {
    drop if `i' ==. 
}

(四)异常数据

  • 将 var2 中不合理的负值设为 0:replace var2 = 0 if var2 <0
  • 缩尾处理:
    • winsor2 last_income, replace cuts(0 99) //缩尾代替
    • winsor2 last_income, replace cuts(0 99) trim //缩尾删除

(五)重命名变量

rename var3 new_var3

(六)编码分类变量

  • 将字符串变量 gender 转换为数字:encode gender, gen(gender_code)
  • 生成行业虚拟变量,为了避免共线性,删掉 indul:
tab Industry, gen(indu)
drop indul
tab year, gen(time)
drop timel

(七)设定面板数据

假设 id 和 year 是面板数据的两个维度:xtset id year

(八)数据合并

根据 id、year 合并另一个数据集“raw_data.data”:merge 1:1 id year using raw_data

(九)数据追加

追加另一个数据集"extra_data.dta":append using extra_data

三、描述性统计

(一)基本统计

summarize //或者 sum

(二)变量的详细统计

summarize income, detail

(三)变量的频率表

tabulate gender

(四)变量间的相关性

correlate income education

(五)回归分析及其描述性统计

regress income education age
estat summarize

(六)简单统计

tabstat y x1 x2 x3, stat(max min mean p50 sd n)

四、相关性分析

(一)绘制直方图

histogram income

(二)绘制散点图

scatter income education

(三)矩阵散点图

<
### 工具变量法简介 工具变量(Instrumental Variable, IV)主要用于解决回归模型中存在的内生性问题。当解释变量与误差项存在相关关系时,传统的最小二乘估计会产生偏差。此时引入工具变量可以帮助获得一致性的参数估计。 ### 使用工具变量计算均值的方法 为了利用工具变量计算特定条件下的均值,在实际应用中通常会采用两阶段最小二乘法(Two Stage Least Squares, 2SLS)。这种方法分为两个主要部分: #### 阶段一:预测内生变量 构建辅助回归方程,其中被解释变量为原模型中的潜在内生变量\(X\),而解释变量则包含了外生控制变量以及选定的工具变量\(Z\)。此步骤目的是获取关于\(X\)的最佳线性无偏预测值\(\hat{X}\)[^1]。 ```r library(AER) # 加载AER包用于执行ivreg函数 model_first_stage <- lm(endogenous_variable ~ exogenous_variables + instruments, data = dataset) predicted_endogenous <- predict(model_first_stage) ``` #### 阶段二:基于预测值得到目标均值 将上一步骤得到的预测值作为新的自变量加入到原始回归方程式中替换掉原来的内生变量,并据此求解因变量\(Y\)相对于新自变量和其他协变量调整后的平均响应水平即所需均值[^2]。 ```r second_stage_model <- ivreg(dependent_variable ~ predicted_endogenous + other_explanatory_vars | exogenous_variables + instruments, data=dataset) summary(second_stage_model)$coefficients["(Intercept)", "Estimate"] + sum(summary(second_stage_model)$coefficients[-1,"Estimate"] * colMeans(subset(dataset, select=c(predicted_endogenous,other_explanatory_vars)))) ``` 上述代码片段展示了如何使用`ivreg()`函数实现两阶段最小二乘估计并最终得出经过工具变量校正后的期望均值。这里假设已经安装了必要的R扩展库如`AER`以便调用专门设计用来处理IV情形下的回归命令。 ### 数据预处理注意事项 考虑到不同软件平台间可能存在差异,在具体实施过程中需要注意以下几点: - 对于SPSS用户来说,虽然可以直接通过图形界面完成大部分常规统计任务,但对于较为复杂的工具变量分析,则建议导出数据至支持此类高级功能的语言环境比如Python或者R来进行深入探索; - 如果选择在R环境中工作,除了掌握基本语法之外还需要熟悉诸如`data.table`这样的高性能数据管理库以提高效率和灵活性;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值