实证 Stata 代码命令汇总

实证 Stata 代码命令汇总

前段时间学习stata整理的笔记 ,参考资料stata统计分析从入门到精通和其他大佬分享的杂七杂八的内容 仅供个人学习 参考使用

一、数据导入和管理

(一)数据导入

  • 清除内存中的所有现有数据:clear
  • 设置工作路径(根据你的文件位置进行调整):cd "C:\Desktop\实证代码命令大全"
  • 从 Excel 文件导入数据:import excel "example.xlsx", firstrow
  • 从 CSV 文件导入数据:import delimited "example.csv", delimiter(",")
  • 从 Stata 文件(.dta 格式)导入数据:use "example.dta", clear
  • 检查导入的数据:describe list in 1/5

(二)数据导出

  • 导出数据到 Excel 文件:export excel using "exported_data.xlsx", firstrow(variables)
  • 导出数据到 CSV 文件:export delimited using "exported_data.csv", delimiter(",")
  • 保存为 Stata 格式的数据文件:save "exported_data.dta", replace

二、数据的处理

(一)生成新变量

  • gen new_var = var1 * var2
  • gen new_var = ln(var)

(二)格式转换

  • 将字符串日期转换为 Stata 日期:gen date_var = date(date_string, "DMY")
  • 年份生成:gen year=real(substr("统计日期", 1, 4))
  • 字符转为数字格式:destring year, replace

(三)缺失数据

  • 如果变量 var1 和 var2 的任何行存在缺失值,则删除该行:drop if missing(varl) | missing(var2)
  • 或者通过循环删除变量缺失的数据:
foreach i in 变量 1 变量 2 变量 3 {
    drop if `i' ==. 
}

(四)异常数据

  • 将 var2 中不合理的负值设为 0:replace var2 = 0 if var2 <0
  • 缩尾处理:
    • winsor2 last_income, replace cuts(0 99) //缩尾代替
    • winsor2 last_income, replace cuts(0 99) trim //缩尾删除

(五)重命名变量

rename var3 new_var3

(六)编码分类变量

  • 将字符串变量 gender 转换为数字:encode gender, gen(gender_code)
  • 生成行业虚拟变量,为了避免共线性,删掉 indul:
tab Industry, gen(indu)
drop indul
tab year, gen(time)
drop timel

(七)设定面板数据

假设 id 和 year 是面板数据的两个维度:xtset id year

(八)数据合并

根据 id、year 合并另一个数据集“raw_data.data”:merge 1:1 id year using raw_data

(九)数据追加

追加另一个数据集"extra_data.dta":append using extra_data

三、描述性统计

(一)基本统计

summarize //或者 sum

(二)变量的详细统计

summarize income, detail

(三)变量的频率表

tabulate gender

(四)变量间的相关性

correlate income education

(五)回归分析及其描述性统计

regress income education age
estat summarize

(六)简单统计

tabstat y x1 x2 x3, stat(max min mean p50 sd n)

四、相关性分析

(一)绘制直方图

histogram income

(二)绘制散点图

scatter income education

(三)矩阵散点图

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值