计量模型、实证stata代码合集,附顶刊示例

超强整理!计量实证常用代码合集!
1、指标说明:
包含以下资料:
中介效应(三步回归、Sobel检验、Bootstrap自抽样检验)
Heckman两阶段回归结果
分组回归(组间系数检验)
工具变量回归模型(2SLS模型)
调节效应(包含画图分析)
中位数回归(解决极端值问题)
PSM倾向性得分匹配回归结果
部分程序示例如下:
在这里插入图片描述
分享文件中包含代码以及示例数据,大家可以照着例子来运行!
顶刊示例:
王永钦,董雯.机器人的兴起如何影响中国劳动力市场?——来自制造业上市公司的证据[J].经济研究,2020,55(10):159-175.
在这里插入图片描述
相关研究:
[1]王艳华.供应链弹性对流通绩效的影响分析—基于可持续性的中介效应[J].商业经济研究,2022(08):33-36.
[2]李蕾,刘荣增.产业融合与制造业高质量发展:基于协同创新的中介效应[J].经济经纬,2022,39(02):78-87.DOI:10.15931/j.cnki.1006-1096.2022.02.004. [3]曾鑫,吴刘仓,曹幸运.混合偏正态数据下中位数回归模型的参数估计[J].昆明理工大学学报(自然科学版),2021,46(03):167-174.DOI:10.16112/j.cnki.53-1223/n.2021.03.392.
[4]田茂茜,虞克明.基于最优化算法的众数回归理论及其在收入分配中的应用[J].统计研究,2017,34(11):118-128.DOI:10.19343/j.cnki.11-1302/c.2017.11.011.
获取:计量模型、实证stata代码合集,附顶刊示例

### 使用 Stata 实现 DID 方法下的中介效应分析 在处理面板数据时,双重差分法(Difference-in-Differences, DID)是一种常用的研究策略变化效果的方法。当引入中介变量后,可以进一步探讨机制路径。下面介绍如何利用 Stata 来执行这一过程。 #### 数据准备 为了进行DID分析,首先需要构建一个包含至少两个时期的数据集,并确保有对照组和实验组的区别标志以及感兴趣的自变量、因变量和潜在的中介变量。假设`post`表示政策实施前后的时间虚拟变量(0=前; 1=后),`treat`代表是否接受干预措施的状态指示符(0=否; 1=是), `mvar`为中介变量而`yvar`为目标结果指标。 ```stata * 加载示例数据集 use "your_dataset.dta", clear * 创建交互项用于后续回归方程 gen post_treat = post * treat ``` #### 主要效应估计 通过加入时间哑元(`post`)、处理状态哑元(`treat`)及其乘积项(`post_treat`)来进行基础DID模型设定: ```stata reg yvar i.post##i.treat mvar , vce(cluster id) est store main_effect ``` 这里采用了稳健标准误聚类调整以应对个体层面的相关性问题[^2]。 #### 中介效应评估 接下来考虑中介作用部分。这涉及到三个独立但相互关联的过程——a路径(between treatment and mediator)、b路径(between mediator and outcome controlling for initial variables) 及 c'路径(direct effect after accounting for mediation)[^3]: ##### A 路径 (从治疗到中介) ```stata xtset id time xtreg mvar i.post##i.treat , fe vce(cluster id) est store a_path ``` ##### B 路径 (从中介到结果控制初始因素) ```stata xtreg yvar i.post##i.treat mvar , fe vce(cluster id) est store b_path ``` ##### C’ 路径 (直接效应,在考虑到中介之后) ```stata xtreg yvar i.post##i.treat mvar , fe vce(cluster id) est store cp_path ``` 最后一步是对上述各阶段的结果进行综合解释并计算总的间接影响大小(a*b)。可以通过手动相乘系数得到近似值或者借助专门软件包如`khb`来获得更加精确的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

安妮老师不常在

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值