【Stata】利用Stata快速完成一篇实证论文的模板(代码分享)

该文详细介绍了如何利用Stata进行数据整理,包括变量重命名、设置面板数据结构;执行描述性统计、相关性分析和共线性诊断;通过模型选择和豪斯曼检验确定固定效应回归;并涉及滞后效应、分组回归、调节效应、中介效应以及控制时间与个体因素的分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、数据整理

rename 综合税率A x2
rename 净资产收益率ROE y
rename 资产负债率 x1
rename 总资产周转率A x3
rename 资产对数 x4
rename 前十大股东持股比例 x5
*xtset 股票代码 截止日期
encode 股票代码 ,gen(id)
encode 截止日期 ,gen(time)
xtset id time 

二、描述性统计

logout,save(基本统计描述)word replace:tabstat y x1 x2 x3 x4 x5,s(N mean p50 sd min max) f(%12.3f) c(s)

三、相关性分析

logout,save(相关分析)word replace:pwcorr_a y x1 x2 x3 x4 x5

四、共线性诊断

reg y x1 x2 x3 x4 x5,r
vif
logout,save(共线性诊断)word replace:vif
order y x1 x2 x3 x4 x5

五、模型选择检验

reg y x1 x2 x3 x4 x5
est store ols
xtreg y x1 x2 x3 x4 x5,fe

检验个体效应 ,表明固定效应优于混合ols模型 ,p<0.05表示个体效应显著,固定效应更好

qui xtreg y x1 x2 x3 x4 x5,re
xttest0 

检验时间效应,结果随机效应也优于混合ols模型,p<0.05表示随机效应显著

xtreg y x1 x2 x3 x4 x5,re
est store re

xtreg y x1 x2 x3 x4 x5,fe
est store fe
hausman fe re

上面是豪斯曼检验,结果拒绝原假设,选用固定效应模型 p<0.05固定效应,大于0.05 随机效应

outreg2 using "豪斯曼检验", word ctitle(FE)  adds(Hausman, `r(chi2)',p-value,`r(p)')replace //输出hausman结果

六、检验结果,应该选择固定效应回归分析

reg y x1 x2 x3 x4 x5
est store ols

xtreg y x1 x2 x3 x4 x5,fe
est store fe

xtreg y x1 x2 x3 x4 x5,re
est store re

esttab ols fe re using 实证结果.rtf, replace b(%12.3f) se(%12.3f) nogap compress s(N r2 r2_a)star(* 0.1 ** 0.05 *** 0.01) //加入了调整R2,r2_a

七、滞后效应

xtreg y x1 x2 x3 x4 x5 L.x5 ,fe
est store fe1

xtreg y x1 x2 x3 x4 x5 L2.x5 ,fe
est store fe2

esttab fe fe1 fe2 using 滞后效应.rtf, replace b(%12.3f) se(%12.3f) nogap compress s(N r2 r2_a)star(* 0.1 ** 0.05 *** 0.01) //加入了调整R2,r2_a

八、分组回归

order y x1 x2 x3 x4 x5 股权性质

encode 股权性质,gen(分组)
order y x1 x2 x3 x4 x5 x6 // 国企 = 2  外资 = 3 私企 = 4

xtreg y x1 x2 x3 x4 x5 if 分组 == 2 ,fe
est store fe3

xtreg y x1 x2 x3 x4 x5 if 分组 == 3 ,fe
est store fe4

xtreg y x1 x2 x3 x4 x5 if 分组 == 4 ,fe
est store fe5

esttab fe fe3 fe4 fe5 using 分组回归.rtf, replace b(%12.3f) se(%12.3f) nogap compress s(N r2 r2_a)star(* 0.1 ** 0.05 *** 0.01) //加入了调整R2,r2_a

九、调节效应

gen TJ = x4*x5

xtreg y x1 x2 x3 x4 x5 TJ ,fe
est store fe6

esttab fe fe6 using 调节效应.rtf, replace b(%12.3f) se(%12.3f) nogap compress s(N r2 r2_a)star(* 0.1 ** 0.05 *** 0.01) //加入了调整R2,r2_a

十、中介效应

* rename 托宾Q值TQ ZJ

xtreg y x1 x2 x3 x4 x5 ,fe
est store fe7

xtreg ZJ x1 x2 x3 x4 x5 ,fe
est store fe8

xtreg y x1 ZJ x2 x3 x4 x5 ,fe
est store fe9

esttab fe7 fe8 fe9 using 中介效应.rtf, replace b(%12.3f) se(%12.3f) nogap compress s(N r2 r2_a)star(* 0.1 ** 0.05 *** 0.01) //加入了调整R2

十一、控制时间&个体

xtreg y x1 x2 x3 x4 x5 i.id i.time ,fe

estadd local id "Yes"
estadd local time "Yes"

est sto fe10

esttab fe10 using 控制个体时间回归.rtf, replace b(%12.3f) se(%12.3f) nogap compress drop(*.id *.time) s(N r2 r2_a id time)star(* 0.1 ** 0.05 *** 0.01) //加入了调整R2

十二、数据集

在这里插入图片描述

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旅途中的宽~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值