数二真题强化

s# 初等数学

平方根

√ ̄是算数平方根,一定>=0

三角函数

cotx= 1 t a n x \frac{1}{tanx} tanx1
(arcsinx)'= 1 1 − x 2 \frac{1}{\sqrt{1-x^{2}}} 1x2 1
在(0, π 2 \frac{π}{2} 2π),tanx>x>sinx
x= 2 \sqrt{2} 2 sint =>t=arcsin x 2 \frac{x}{\sqrt{2}} 2 x

反三角函数

用换元时,尽量用x=sint,t=arcsinx

复合函数

f(u)的表达式中应含有u,例如f(x2)的表达式应含有x2,将x2看为u

一元二次方程

顶点坐标在这里插入图片描述

高等数学

极限

震荡无穷大不是无穷大,即无界不一定是无穷大

数列

数列收敛,不一定单调,可能在收敛值震荡,如n-> ∞ \infty ,(-1)n/n收敛于0,但在0左右震荡
单调有界必收敛,前提是f(x)的x单调

x->0的等价无穷小:
arcsinx~x
x-sinx~ 1 6 \frac{1}{6} 61x3
tanx-x~ 1 3 \frac{1}{3} 31x3
x-arctanx~ 1 3 \frac{1}{3} 31x3
(1+x)a-1~ax

极限计算

1、极限非零因子先求出来,可用于平方差公式a2-b2,让有平方的分子有理化,让分母直接代入求出。如分子有1- c o s x \sqrt{cosx} cosx
2、有理加减可以先用后验,各部分极限都存在即可
3、洛必达和等价无穷小代换不能同一步进行

连续与间断点

找间断点:1、所在分母,为0的点;2、所在分子,使函数趋于无穷的点
在x0间断,则在x0去心邻域有定义,但在x0定义可有可无,但在x0处函数一定是断了

可去间断点

可去间断点需满足f(x)在x₀处无定义,或在x₀处有定义但不等于函数f(x)在x₀的左右极限。

导数与微分

常用导数

在这里插入图片描述

导数

(ln|x|)'= 1 x \frac{1}{x} x1

不可跨:用导数定义求导时,严格是-f(x0),而不是任何其他的诸如-f(-x0)、-f(x0-a)
不可跨越x0

导数定义limf(x)-f(0)的x可以是其他形式,如x3、ex

微分

方程求微分dy
解:隐函数方程两边求导得y’,dy=y’dx

微分中值定理及导数应用

泰勒

在这里插入图片描述

单调性

1、用f’(x)>0判断单调性是在区间上,某点f’(x0)>0无法得出x0邻域单调性
2、单调区间可以间断,且是第一类间断点
3、在区间上,或x0邻域,f’(x) ≥ \ge 0,(=0是有限点),单调增加

极值

极值点可能是驻点也可能是连续但不可导点
1、极值第一充分条件可用于连续不可导点的极值判断
2、极值第二充分条件f’'(x0)只能在x0二阶可导前提下判断

凹凸性

f’‘(x)>0凹可能递增也可能递减;f’'(x)<0凸可能递增也可能递减

拐点

第二充分条件:若y’‘(x0)=0,且y’‘’(x0) ≠ \not = = 0 则x0为拐点

渐近线

函数在一侧水平渐近线与斜渐近线存在性互斥,但一侧没有还要考虑另一侧
如x→+ ∞ \infty 有水平无斜,但x→- ∞ \infty 有斜无水平

铅直

铅直找无定义点,分母为0点

不定积分

1 x 2 − 6 x + 13 \frac{1}{x^2-6x+13} x26x+131dx~ 1 a \frac{1}{a} a1arctan x a \frac{x}{a} ax
1 1 − x 2 \frac{1}{\sqrt{1-x^{2}}} 1x2 1dx~∫ 1 1 − c o s 2 x \frac{1}{\sqrt{1-cos^{2}x}} 1cos2x 1dx

定积分

平均值

定积分是顶部不均匀图形的面积,该图形左、右、底部都是直线,让该面积除以区间即函数的平均值

积分上限函数

定义域由被积函数f(t)确定,与积分上下限无关

不定积分是f(x)的全体原函数
积分上限函数本质是f(x)的一个原函数,C由常数下限a决定,a为0时 ∫ a x \int_a^x axf(t)dt就是C为0的f(x)的原函数;
而不定积分的C是任意常数。
所以,若 ∫ a x \int_a^x axf(t)dt的a任意,则 ∫ a x \int_a^x axf(t)dt就是不定积分
在这里插入图片描述

变上限积分求导特殊题型
被积函数f(t)不能含有x,用换元法将x换到f()外当做常数
在这里插入图片描述

定积分换元

被积函数f(x)在区间连续才能使用换元

定积分计算

周期性:
在这里插入图片描述
分部积分:
∫udv的u、v应都可积,即都连续
如tanx不可做u、v

定积分应用

旋转体体积

在这里插入图片描述

极坐标面积在这里插入图片描述
物理应用

在这里插入图片描述

形心:2013

微分方程

常识

不定积分是lnx不加绝对符

C可以是lnC

一阶常系数一定按一阶线性方程,不要按高阶非齐次算

可降阶微分方程

y’‘=f(y,y’)

令p=y’,则y’'=p d p d y \frac{dp}{dy} dydp,化成自变量y因变量p的一阶微分方程,然后以可分离变量方程计算∫dp=∫dy
20年21题

一阶线性微分方程

y’+p(x)y=q(x) 其中q(x)是0时,中括号里俩C合成一个C
在这里插入图片描述

常系数非齐次线性微分方程

在这里插入图片描述
非齐次特解xkQm(x)eλx其实是将齐次通解的C置0的特解,其实是唯一的

多元函数微分

偏导

二阶偏导连续=>f’‘12=f’'21

求f(x,y)在(0,0)对x偏导数,让y为0,x逼近0
在这里插入图片描述

全微分

可微充分条件:一阶偏导且连续
在这里插入图片描述

极值

条件极值

在这里插入图片描述
真题:2013年

二重积分

在这里插入图片描述

在这里插入图片描述
反过来D1+D2=D,前提是D1、D2的被积函数相同,这样D1、D2视作同一积分域,便于运用二重积分奇偶性计算

线性代数

行列式

不用按行/列展开,每项取不同行不同列元素乘积再乘(-1)的逆序
逆序是不按从小到大的一对数的对数

矩阵

初等变换

只能一行加另一行,不能一行自加一个数

矩阵运算

当A2-B2其中有一个是单位矩阵的时候,可以用平方差公式:
A2-E=(A+E)(A-E)
E-A2=(E+A)(E-A)

矩阵乘法

矩阵乘法无消去律,即AC=BC ⟹̸ \not \Longrightarrow A=B;若C可逆,可用两边右乘C-1消去C

(AB)C=A(BC)但不可(AC)B

矩阵行列式

|A-1|=|A|-1
|kAB|=kn|A||B|
A=B ⟹ \Longrightarrow |A|=|B|
|An|=|A|n

伴随矩阵

A*A=AA*=|A|E
(AB)*=B*A*

AA*=A*A=|A|E ⟹ \Longrightarrow A*=|A|A-1(前提A可逆)

初等矩阵

初等矩阵的逆矩阵是本身:E(i,j)-1=E(i,j)

逆矩阵

AA-1=E

向量

秩满可逆不为零无关唯一只零解
方阵满秩方阵不满秩
方阵可逆方阵不可逆
方阵的行列式不为零方阵的行列式为零
组成方阵的各个列向量线性无关组成方阵的各个列向量线性相关
齐次方程只有零解(唯一解)齐次方程有非零解(有无穷多解)

满足以上任意一条,则其他同列条件也同时满足

向量组

向量组等价 充分必要:r(A)=r(B)=r(A|B)
(矩阵等价 为r(A)=r(B))

线性相关 线性无关

r(A)=n线性相关
r(A)<n线性无关
b1与a1,a2,a3线性无关,b2与a1,a2,a3线性相关,则b1+b1与a1,a2,a3线性无关

低维线性无关,则高维也线性无关

矩阵的秩

A是m×n矩阵,r(A) ≤ \le min(m,n)

若A可逆,则r(AB)=r(B)
[a1x11+a2x21,a1x12+a2x22]=[a1,a2] [ x 11 x 12 x 21 x 22 ] \left[ \begin{matrix} x11 & x12 \\ x21 & x22 \end{matrix} \right] [x11x21x12x22]
r(AB) ≤ \le r(A)
r(AB) ≤ \le r(B)

向量组

向量组A能被向量组B线性表示 ⟹ \Longrightarrow r(A) ≤ \le r(B)
向量组B(b1,b2,…bn) ⟹ \Longrightarrow r(B) ≤ \le n

AB=C 得C的列向量组能被A的列向量组线性表示;C的行向量组能被B的行向量组线性表示;

在这里插入图片描述

线性方程组

AB=0
在这里插入图片描述

非齐次

Ax=b有非零解(唯一解或无数解)<=>|A|=0

特征值特征向量

因|A|=λ1λ2λ3,所以A可逆=>|A| ≠ \not = = 0 => A无0特征值

λ1的特征向量为a1,a2,其线性组合a3=k1a1+k2a2仍是λ1的特征向量

矩阵相似

证明一个一般矩阵和一个一般矩阵相似:在三阶情况下,相同特征值的λiE-A的秩相同

两实对称矩阵A、B相似<=>特征多项式相等 即|λE-A|=|λE-B|

二次型

x=Qy =>y=Q-1x
只有A经过可逆线性变换才能使惯性指数保持不变

规范型

根据惯性指数直接得,如正惯1,负惯1,则规范型为y12+y22

合同

1、实对称矩阵A相似于矩阵B,相似一定合同,但合同不一定相似
2、A合同B等<=>A、B正负惯相等
3、A合同B,则|A|与|B|同号
证明:QTAQ=B =>
|QTAQ|=|B| =>
|QT||A||Q|=|B|=>(|QT|=|Q|)
|Q|2|A|=|B|
因|Q|2>0则|A|同号|B|

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值