python通过摄像头参数和图片计算物体距离
要从图像中计算摄像头到物体的距离,您需要知道一些额外信息,如物体的实际尺寸、相机的内参等
import cv2
import numpy as np
def calculate_distance(focal_length, known_width, pixel_width):
# 计算距离
distance = (known_width * focal_length) / pixel_width
return distance
def estimate_focal_length(known_distance, known_width, pixel_width):
# 估计相机焦距
focal_length = (pixel_width * known_distance) / known_width
return focal_length
def detect_object(image_path):
# 读取图像
image = cv2.imread(image_path)
# 进行对象检测,例如使用Haar级联分类器或YOLO等算法
# 检测到对象后,获取对象的边界框宽度(以像素为单位)
# 假设我们已经检测到物体并获取了边界框宽度
object_width_pixels = 100
# 已知的物体实际宽度(单位:厘米)
known_width_cm = 10
# 已知的相机焦距(单位:像素)
known_focal_length_pixels = 1000
# 估计相机焦距
estimated_focal_length = estimate_focal_length(known_distance, known_width_cm, object_width_pixels)
# 计算物体到相机的距离
distance_cm = calculate_distance(estimated_focal_length, known_width_cm, object_width_pixels)
return distance_cm
# 调用函数进行距离估计
distance = detect_object("image.jpg")
print(f"物体与摄像头的距离为:{distance} 厘米")