图片/视频等效果质量评测指标

本文探讨了在视频剪辑软件中,如何通过利用人眼视觉系统特性,建立客观的图片/视频评测指标,如PSNR、SSIM等,以减少主观因素影响,从而在AI工具测评、HDR编码效果评估等方面提供科学参考。介绍了全参考图像评测体系和无参考训练模型,如VMAF、DVQA和AVQT,以提升视频质量评估的精确度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、背景:

在视频剪辑软件中,除了剪辑基础能力以外,还会经常遇到要对图片/视频效果测评的场景,例如新加了一种抠图/抠头特效,或者由一种滤镜效果由A替换成了B;对于这种效果上的验证,由于没有统一或者客观的标准,所以需求再保证功能没有问题后,效果由产品/运营同学来验收。但这种通过人眼观察得出的主观评价,往往带有个人偏好合以及受到环境等因素的影响。如果可以根据人眼视觉系统的特性来建立图片/视频的评测指标,这样就可以根据实际情况给出客观的数据,不再收到个人偏好或者环境等因素的影响了。

二、目标收益:

1、整体目标收益

1)客观评价图片/视频效果类等相关需求的结果,根据实际情况给出客观评价指标,为需求上线提供参考标准。

2)图片/视频客观评价指标体系除了在必剪应用中使用,可以应用在所有需要对图片/视频进行评测的场景:譬如超分、去噪、插帧、色彩增强等视频处理领域;以及SDR/HDR效果、视频编解码算法研究等视频编码领域;

3)图片/视频质量评测指标后续规划讲针对不同的领域/人群的视觉特性来生成训练数据集,通过训练数据集,给到更专业的评价参考标准。

2、未来可解决的场景:

1)AI工具(智能生图、智能生成视频等)的测评

2)HDR编码效果的测评(例如 HDR效果VS成本、设备)

3)……

三、解决方案

1、全参考图像评测体系:

全参考的客观评价指标图像质量客观评价指标

PSNR、SSIM、RMSE、NRMSE、ENTROP、IEF、UQI

1)PSNR:峰值信噪比

PSNR值越大,表示图像的质量越好,一般来说:

(1)高于40dB:说明图像质量极好(即非常接近原始图像)

(2)30—40dB:通常表示图像质量是好的(即失真可以察觉但可以接受)

(3)20—30dB:说明图像质量差

### NRQM 图像质量评估指标 #### 定义 NRQM(No Reference Quality Metric)是一种无需参考原始图像即可评估处理后图像质量的度量方法[^1]。这类度量主要依赖于模拟人类视觉系统的特性,通过对图像本身的特征分析来判断其质量。 #### 方法 NRQM 的计算通常基于以下几个方面: - **纹理复杂度**:衡量图像中的纹理信息是否被保留或增强。 - **颜色分布**:检查色彩空间内的像素分布情况,确保自然的颜色过渡。 - **亮度对比度**:评估图像整体以及局部区域间的明暗差异程度。 - **边缘清晰度**:检测并量化物体边界处的变化梯度,反映细节保持状况。 具体实现时,算法会提取上述特征作为输入,并通过预训练模型或其他方式得出最终评分。例如,在超分辨率重建领域内,即使无法获得真实的高清版本用于比较,依然能够利用 NRQM 对生成图片质量做出合理评价。 #### 应用场景 NRQM 广泛应用于各种计算机视觉任务中,特别是在那些难以获取高质量参照样本的情况下特别有用。典型的应用包括但不限于: - **图像修复与增强**:如老旧照片翻新、低光照条件下拍摄的照片改善等场合; - **视频编码压缩**:帮助调整参数以平衡文件大小和播放效果之间的关系; - **医学影像处理**:辅助医生更好地理解病变部位的具体形态结构而不受设备局限影响。 ```python import numpy as np from skimage.metrics import niqe # 假设使用skimage库中的niqe函数代表nrqm计算 def calculate_nrqm(image_array): """ 计算给定图像数组的NRQM得分 参数: image_array (numpy.ndarray): 输入待评测的灰度或彩色图像矩阵 返回: float: nrqm score """ return niqe(image_array) # 示例调用 example_image = np.random.rand(256, 256) * 255 # 创建随机测试图像 score = calculate_nrqm(example_image.astype(np.uint8)) print(f"The NRQM Score of the example image is {score:.4f}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值