一、背景:
在视频剪辑软件中,除了剪辑基础能力以外,还会经常遇到要对图片/视频效果测评的场景,例如新加了一种抠图/抠头特效,或者由一种滤镜效果由A替换成了B;对于这种效果上的验证,由于没有统一或者客观的标准,所以需求再保证功能没有问题后,效果由产品/运营同学来验收。但这种通过人眼观察得出的主观评价,往往带有个人偏好合以及受到环境等因素的影响。如果可以根据人眼视觉系统的特性来建立图片/视频的评测指标,这样就可以根据实际情况给出客观的数据,不再收到个人偏好或者环境等因素的影响了。
二、目标收益:
1、整体目标收益
1)客观评价图片/视频效果类等相关需求的结果,根据实际情况给出客观评价指标,为需求上线提供参考标准。
2)图片/视频客观评价指标体系除了在必剪应用中使用,可以应用在所有需要对图片/视频进行评测的场景:譬如超分、去噪、插帧、色彩增强等视频处理领域;以及SDR/HDR效果、视频编解码算法研究等视频编码领域;
3)图片/视频质量评测指标后续规划讲针对不同的领域/人群的视觉特性来生成训练数据集,通过训练数据集,给到更专业的评价参考标准。
2、未来可解决的场景:
1)AI工具(智能生图、智能生成视频等)的测评
2)HDR编码效果的测评(例如 HDR效果VS成本、设备)
3)……
三、解决方案
1、全参考图像评测体系:
全参考的客观评价指标(图像质量客观评价指标)
PSNR、SSIM、RMSE、NRMSE、ENTROP、IEF、UQI
1)PSNR:峰值信噪比
PSNR值越大,表示图像的质量越好,一般来说:
(1)高于40dB:说明图像质量极好(即非常接近原始图像)
(2)30—40dB:通常表示图像质量是好的(即失真可以察觉但可以接受)
(3)20—30dB:说明图像质量差