每天五分钟机器学习:均值归一化技术可以构建更好的推荐系统

本文探讨了新用户在电影评分网站上没有评分记录时,如何通过均值归一化来初始化推荐系统。在没有归一化的情况下,优化目标导致新用户的预测评分全为0,无法有效推荐电影。通过均值归一化,将电影评分减去平均分,创建新矩阵Y,使预测值基于电影的平均评分,解决了这一问题。
摘要由CSDN通过智能技术生成

本文重点

现在有一个问题,假如电影网站新增加了一个用户,此时该用户没有为任何电影打过分数,那么电影网站应该如何来为他推荐电影呢?此时可以使用均值归一化的方式来进行初始化的操作。

数据集

 

新增加一个用户五

没有归一化出现的问题

现在数据已经有了,我们对其进行学习,我们的优化目标为:

 

优化目标

这是整体的优化目标,如果从用户五的角度来说,如果我们要学习θ(5),因为第五个人对电影的评分都是?,所以r(i,j)≠1,而且因为我们要学习θ所以此时的x为常数,所以,我们此时的优化目标变成了:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

幻风_huanfeng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值