每天五分钟计算机视觉:如何在现有经典的卷积神经网络上进行微调

64 篇文章 12 订阅 ¥19.90 ¥99.00
本文详细阐述了卷积神经网络(CNN)的微调原理与步骤,包括选择预训练模型、修改网络结构、初始化参数和微调过程。通过实例展示了如何在ImageNet预训练的VGG16模型上进行微调,强调了数据集准备、优化器选择、学习率调整和防止过拟合的重要性。
摘要由CSDN通过智能技术生成

本文重点

在深度学习领域,卷积神经网络(Convolutional Neural Networks,CNN)因其强大的特征提取和分类能力而广泛应用于图像识别、自然语言处理等多个领域。然而,从头开始训练一个CNN模型往往需要大量的数据和计算资源,且训练时间较长。幸运的是,迁移学习(Transfer Learning)技术为我们提供了一条有效途径:通过微调(Fine-tuning)已训练好的神经网络模型,使其适应新的任务和数据集。

微调的基本原理

微调是指在已训练好的神经网络模型基础上,通过修改部分网络结构和参数,使其适应新的任务和数据集。具体来说,微调包括以下几个步骤:

选择合适的预训练模型:预训练模型通常是在大规模数据集上训练得到的,具有强大的特征提取能力。选择与目标任务相似领域的预训练模型,可以更快地收敛并获得更好的性能。

修改网络结构:根据目标任务的需求,修改预训练模型的网络结构。例如,如果目标任务是分类任务,可以将预训练模型的最后一层全连接层替换为新的分类层,以适应新的类别数。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

幻风_huanfeng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值