阿里巴巴达摩院人工智能训练师(初级)

阿里颁发的证书,找“橙点同学”
一共有五个视频课程,全部上完后即可参加考试~
考试一共34题,可以考两次,第一次不过的话没关系,可以看题析之后再考~
基本上题目都一样的,但顺序会变化哦~

1.打开浏览器搜索网站——橙点同学 (orange-class.com)

在这里插入图片描述

2.登录账号并修改个人信息——实名本人及学校,用于证书填写

在这里插入图片描述

3.返回主页,点击获得认证——人工智能训练师(高级)

在这里插入图片描述

4.观看课程——硬拉没用,得老老实实看,可以2倍速

注:如果觉得慢,可以四个视频同时2倍速播放

在这里插入图片描述

5.看完视频记得刷新——确保显示已学完

在这里插入图片描述

6.开始认证考试

在这里插入图片描述
在这里插入图片描述

7.参考答案——题的顺序不一致,但是选项顺序一致

单选题

题目:数据智能的目标是什么

A. 取得更多的数据B. 信息互通
C. 数据驱动决策
D. 优化知识结构
答案:C

题目:以下哪种说法是正确的

A. 知识是人类从各种途径中获得的经过提升总结与提炼的系统认识
B. 数据是人类从各种途径中获得的经过提升总结与提炼的系统认识
C. 信息是人类从各种途径中获得的经过提升总结与提炼的系统认识
D. 智能是人类从各种途径中获得的经过提升总结与提炼的系统认识
答案:A

题目:以下对大数据的描述错误的是

A. 规模性
B. 高速性
C. 规律性
D. 多样性
答案:C

题目:通常用一些数理统计的方法对所定模型或估计的可靠程度做出合理的推断这是对什么的描述

A. 数据采集
B. 数据标注
C. 模型训练
D. 数据分析
答案:D

题目:在非标签数据集中做归纳是机器学习中的哪种

A. 监督学习
B. 无监督学习
C. 强化学习
D. 知识学习
答案:B

题目:在自动驾驶中需要对别的车辆、障碍物、行人等做出标注,这种标注类型是以下哪种标注

A. 图像标注
B. 文本标注
C. 语音标注
D. 以上都是
答案:A

题目:什么是一种描述实体关系的语义网络

A. 机器学习
B. 知识图谱
C. 人机交互
D. 自然语言处理
答案:B

题目:以下不是数据分析工具的有

A. Python
B. SPSS
C. Mysql
D. Excel
答案:C

题目:我们把教会人工智能产品如何在应用场景实现称做什么

A. 数据整理
B. 数据分析
C. 知识梳理
D. 数据标注
答案:C

题目:有人工智能 “发动机” 之称的是

A. CPU
B. 类脑芯片
C. NLP
D. SQL
答案:C

题目:在语音类标注中以下哪项标描述不正确

A. 只需要判断语音转文内容是否正确
B. 不需要对语音的语速,口气等进行判断
C. 语音转文本除了内容外还需要重点看多音字是否有读对
D. 以上都不对
答案:B

题目:通过打标签、分类、画框、注释等方式对收集来的数据进行标记是对什么的描述

A. 数据采集
B. 数据标注
C. 模型训练
D. 数据分析
答案:B

题目:知识图谱是揭示实体之间关系的语义网络,基本组成单位

A. 实体 - 信息
B. 数据 - 信息
C. 实体 - 数据
D. 实体 - 关系 - 实体
答案:D

题目:人工智能的发展经历了几个阶段

A. 2
B. 3
C. 4
D. 5
答案:B

题目:在数据标注前期最先做的是什么

A. 明确标注需求
B. 制定标注规则
C. 标注质量控制
D. 标注内容的沉淀
答案:A

题目:以下对自然语言来说理解容易受挑战的是

A. 一词多意
B. 没有见过的网络用语
C. 方言用语
D. 以上都是
答案:D

题目:交易记录、通话记录、交通轨迹等属于哪类数据

A. 物理数据
B. 影音图文数据
C. 文本数据
D. 信息数据
答案:D

题目:首次提出 “人工智能” 概念是在哪里

A. 美国达特茅斯学院研讨会
B. 卡耐基梅隆大学
C. 美国宾夕法尼亚大学
D. IBM 公司
答案:A

题目:以下不是人工智能训练师具体工作内容的是

A. 算法调优
B. 数据标注
C. 解决方案设计
D. 算法研发
答案:D

题目:人工智能训练师职业分为级个等级

A. 6
B. 5
C. 4
D. 3
答案:B

判断题

题目:人工智能训练师中的 “初级工” 需要熟练掌握智能系统设计

A. 正确
B. 错误
答案:B

题目:自然语言处理在人类语言和机器语言之间建立一个桥梁

A. 正确
B. 错误
答案:A

题目:若具备高于等级要求的学历,可减免 1 年从业时间的要求

A. 正确
B. 错误
答案:A

题目:监督学习是根据已知数据集做训练

A. 正确
B. 错误
答案:A

题目:号称人工智能 “燃料” 的是大数据

A. 正确
B. 错误
答案:A

题目:人社部于 2021 年 2 月颁布了人工智能训练师的国家智能技术标准

A. 正确
B. 错误
答案:B

题目:人工智能的基础硬件,提高了数据的质量

A. 正确
B. 错误
答案:B

题目:物流单照片中对物流单号的识别属于图像标注

A. 正确
B. 错误
答案:B

题目:我们所说的数据就是知识

A. 正确
B. 错误
答案:B

题目:数据标注只需要对标注对象进行分类判断即可

A. 正确
B. 错误
答案:B

多选题

题目:常用的数据展示工具有

A. FineBI
B. Python
C. PPT
D. Qracle
答案:A、C

题目:人工智能的核心驱动力是什么

A. 算力
B. 算法
C. 大数据
D. 服务器
答案:A、B、C

题目:自然语言处理的挑战以下正确的说法是

A. 在语法、语义和语音等不同层面存在不确定性
B. 新的词汇、术语、语义和语法导致未知语言现象的不可预测性
C. 数据资源难以完全覆盖复杂的语言现象
D. 语义的模糊性和错综复杂的关联性难以用简单的数学模型描述
答案:A、B、C、D

题目:我们常说的机器学习有哪几种类型

A. 知识学习
B. 监督学习
C. 无监督学习
D. 强化学习
答案:B、C、D

内容概要:本文详细解析了阿里巴巴达摩院关于高级人工智能训练师考试的核心知识点,涵盖了单选题、判断题和多选题。主要内容包括数据标签构建的原则、模型指标的计算方法、TTS(文本转语音)流程的关键步骤以及数据优化策略。通过具体题目和答案解析,帮助考生深入理解数据质量提升、分类模型的应用场景、语音合成标记语言(SSML)的作用、以及各类模型性能评估指标如准确率、精确率等。此外,还涉及了ASR(自动语音识别)、多标签分类任务、文本正则化处理等技术细节。 适合人群:准备参加阿里巴巴达摩院高级人工智能训练师认证考试的技术人员,尤其是有一定AI基础并希望深入了解模型训练、数据处理及相关应用场景的专业人士。 使用场景及目标:①掌握数据标签构建的基本原则,确保标签的准确性和业务相关性;②熟悉TTS流程中的各个模块功能及其常见错误类型;③理解如何通过优化数据质量来提高模型性能;④学会计算和解释模型的各种评价指标,如准确率、精确率等;⑤掌握分类模型的具体应用场景,如发票流程处理等。 阅读建议:本文以考试题目的形式呈现了大量知识点,建议读者在复习时重点关注每个知识点背后的原理和应用场景,同时结合实际案例进行练习,以加深理解和记忆。对于不确定的概念或术语,可通过查阅相关资料进一步学习。
### 阿里达摩院人工智能训练师职位描述 阿里巴巴达摩院作为全球领先的技术研究机构之一,其人工智能训练师的职责通常围绕模型开发、数据处理以及算法优化展开。具体而言,该岗位可能涉及构建和维护机器学习模型,确保模型能够高效运行并满足业务需求[^1]。 ### 技能要求 对于人工智能训练师这一角色,技能要求主要包括以下几个方面: #### 编程能力 熟练掌握至少一种编程语言(如 Python 或 Java),因为这些语言广泛应用于机器学习框架中。Python 是目前最流行的用于 AI 开发的语言,因为它拥有丰富的库支持,例如 TensorFlow 和 PyTorch[^2]。 ```python import tensorflow as tf from tensorflow.keras import layers, models model = models.Sequential() model.add(layers.Dense(64, activation='relu', input_shape=(input_dim,))) model.compile(optimizer=tf.optimizers.Adam(), loss='mse') ``` #### 数据分析与处理 具备强大的数据分析能力和熟悉常用的数据预处理技术是非常重要的。这包括但不限于清洗噪声数据、特征工程设计以及大规模分布式计算环境下的数据管理技巧。 #### 深度学习理论基础 深入理解神经网络架构及其变体形式(CNNs, RNNs/LSTMs 等),并对最新的研究成果保持敏感度。此外还需要了解强化学习原理,在某些特定应用场景下可能会被采用。 ### 培训资源推荐 针对希望成为阿里达摩院人工智能训练师的学习者来说,可以参考以下几种类型的培训材料来提升自己的竞争力: - **官方文档与开源项目**:积极参与 GitHub 上由阿里巴巴贡献的各种开源项目实践操作,比如 MMDetection、MMEditing 等视觉方向的经典案例实现过程解析。 - **在线课程平台**:利用像 Udacity 提供的专业纳米学位计划或者 Coursera 合作伙伴推出的专项证书系列课完成系统化知识体系搭建工作;同时也可以关注国内网易云课堂联合高校名师打造的相关精品慕课内容。 - **社区交流活动参与**:定期参加 Kaggle 平台举办的比赛挑战赛积累实战经验,并通过阅读其他参赛选手分享的经验帖获取灵感启发;另外还可以加入一些本地线下 Meetup 小组共同探讨前沿话题动态变化情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值