机器学习-白板推导系列(七)-核方法(Kernel Method)

7. 核方法(Kernel Method)

7.1 背景介绍

7.1.1 概述

  1. 问题引出
    线性可分的数据有时夹杂一点噪声,可以通过改进算法来实现分类,比如感知机的口袋算法和支持向量机的软间隔。但是有时候数据往往完全不是线性可分的,比如下面这种情况:
    在这里插入图片描述
    • 在异或问题中数据往往不是线性可分的,但通过将数据映射到高维空间后就可以实现线性可分。可以认为高维空间中的数据比低维空间的数据更易线性可分
    • 因此,对于异或问题,我们可以通过寻找一个映射 ϕ ( x ) \phi (x) ϕ(x)将低维空间中的数据x映射成高维空间中的 z z z来实现数据的线性可分,例如:
      x = ( x 1 , x 2 ) ⏟ 二 维 → ϕ ( x ) z = ( x 1 , x 2 , ( x 1 − x 2 ) 2 ) ⏟ 三 维 \underset{二维}{\underbrace{x=(x_{1},x_{2})}}\overset{\phi (x)}{\rightarrow}\underset{三维}{\underbrace{z=(x_{1},x_{2},(x_{1}-x_{2})^{2})}} x=(x1,x2)ϕ(x) z=(x1,x2,(x1x2)2)
      该数据就可以实现线性可分:
      在这里插入图片描述
      从2维到3维可以认为是核方法的应用。
  2. 解决方法
    我们可以用 P L A PLA PLA S V M SVM SVM来解决,对比 P L A PLA PLA S V M SVM SVM:
    对于分类问题,已学过的方法有PLA(感知机算法)和SVM:
线性可分允许一点点错误严格非线性
PLAPocket Alorithm ϕ ( x ) \phi (x) ϕ(x)+PLA
Hard-Margin SVMSoft-Margin SVM ϕ ( x ) \phi (x) ϕ(x)+Hard-Margin SVM

其中 ϕ ( x ) \phi (x) ϕ(x)表示:非线性高维转换的函数。

  1. 对于非线性可分问题有如下解决方法:

    • PLA: 多 层 感 知 机 ( 神 经 网 络 ) ⇒ D e e p    L e a r n i n g 多层感知机(神经网络)\Rightarrow Deep\;Learning DeepLearning
    • SVM:核方法SVM

    对于这种问题,有想法是将非线性可分的数据集通过一个非线性转换函数 ϕ ( x ) \phi (x) ϕ(x) 转换为线性可分数据。

7.1.2 核方法

  1. 核方法简介
    核方法一般都在SVM中进行介绍,白板推导中将其独立出来,主要是为了理解其思想,不只可以用于SVM。
    • 核方法可以理解
      • K e r n e l    M e t h o d \color{blue}Kernel\;Method KernelMethod 从思想角度
      • K e r n e l    T r i c k \color{blue}Kernel\;Trick KernelTrick从计算角度
      • K e r n e l    F u n c t i o n \color{blue}Kernel\;Function KernelFunction 重点
    • 核方法有如下两个重要作用
      • 非 线 性 带 来 高 维 转 换 ( 从 模 型 角 度 ) \color{red}非线性带来高维转换(从模型角度) 线
      • 对 偶 表 示 带 来 内 积 ( 从 优 化 角 度 ) \color{red}对偶表示带来内积(从优化角度)
  2. 数学表示
    • 优化问题:
      { m i n λ    1 2 ∑ i = 1 N ∑ j = 1 N λ i λ j y i y j x i T x j − ∑ i = 1 N λ i , i = 1 , 2 , ⋯   , N λ i ≥ 0 , i = 1 , 2 , ⋯   , N (7.1.1) \left\{\begin{matrix} \underset{\lambda }{min}\; \frac{1}{2}\sum_{i=1}^{N}\sum_{j=1}^{N}\lambda _{i}\lambda _{j}y_{i}y_{j}x_{i}^{T}x_{j}-\sum_{i=1}^{N}\lambda _{i},i=1,2,\cdots ,N \\ \lambda _{i}\geq 0,i=1,2,\cdots ,N \end{matrix}\right.\tag{7.1.1} {λmin21i=1Nj=1NλiλjyiyjxiTxji=1Nλi,i=1,2,,Nλi0,i=1,2,,N(7.1.1)
    • 将数据映射到高维空间 ϕ ( x ) \phi (x) ϕ(x)后也就需要求解以下优化问题:
      { m i n λ    1 2 ∑ i = 1 N ∑ j = 1 N λ i λ j y i y j ϕ ( x i ) T ϕ ( x j ) − ∑ i = 1 N λ i , i = 1 , 2 , ⋯   , N λ i ≥ 0 , i = 1 , 2 , ⋯   , N (7.1.2) \left\{\begin{matrix} \underset{\lambda }{min}\; \frac{1}{2}\sum_{i=1}^{N}\sum_{j=1}^{N}\lambda _{i}\lambda _{j}y_{i}y_{j}{\color{Red}{\phi (x_{i})^{T}\phi (x_{j})}}-\sum_{i=1}^{N}\lambda _{i},i=1,2,\cdots ,N \\ \lambda _{i}\geq 0,i=1,2,\cdots ,N \end{matrix}\right.\tag{7.1.2} {λmin21i=1Nj=1Nλiλjyiyjϕ(xi)Tϕ(xj)i=1Nλi,i=1,2,,Nλi0,i=1,2,,N(7.1.2)
    • 然而在上面的方法中如果先将 ϕ ( x i ) \phi (x_{i}) ϕ(xi) ϕ ( x j ) \phi (x_{j}) ϕ(xj)计算出来然后再做点积,由于维度特别高,加之得到 ϕ ( x i ) \phi (x_{i}) ϕ(xi) ϕ ( x j ) \phi (x_{j}) ϕ(xj)也需要计算量,因此 计 算 量 是 相 当 大 的 \color{red}计算量是相当大的 ,因此就有了 核 方 法 \color{red}核方法
    • 通过使用核函数我们可以 直 接 得 到 ϕ ( x i ) 与 ϕ ( x j ) 的 内 积 \color{red}直接得到\phi (x_{i})与\phi (x_{j})的内积 ϕ(xi)ϕ(xj),正定核函数定义如下:
      ∀ x , x ′ ∈ X , ∃ ϕ : X ↦ H , ϕ ∈ H s . t .    K ( x , x ′ ) = ϕ ( x i ) T ϕ ( x j ) = < ϕ ( x i ) , ϕ ( x j ) > (7.1.3) \color{red}\forall x,x^{'}\in \mathcal{X} ,\exists \phi :\mathcal{X} \mapsto \mathcal{H},\phi \in \mathcal{H}\\s.t.\; K(x,x^{'})=\phi (x_{i})^{T}\phi (x_{j})=<\phi (x_{i}),\phi (x_{j})>\tag{7.1.3} x,xX,ϕ:XH,ϕHs.t.K(x,x)=ϕ(xi)Tϕ(xj)=<ϕ(xi),ϕ(xj)>(7.1.3)
      花体( X \mathcal{X} X)表示空间, ↦ \mapsto 表示映射,则称 K ( x , x ′ ) K(x,x^{'}) K(x,x)是一个正定核函数
    • 其中 H \mathcal{H} H是Hilbert空间(完备的可能是无限维的被赋予内积的线性空间),如果去掉内积这个条件我们简单地称为核函数。
    • 假设有核函数 K ( x , x ′ ) = exp ⁡ ( − ( x − x ′ ) 2 2 σ 2 ) K(x,x')=\exp(-{(x-x')^2\over 2\sigma^2}) K(x,x)=exp(2σ2(xx)2);这样只需要计算 x − x ′ x-x' xx ,不必再求其内积,计算量大大减少。此技巧成为Kernel Trick

因此,从以上过程可以看出核函数蕴含了两个作用:

  • 高维转换
  • 解决内积

7.2 正定核的两个定义

我们上一节理解了什么是核函数(一般指正定核函数),这一节咱们看看核函数的2个精准定义,以及精准定义之间的联系。

7.2.1 精准定义1

  1. 定义1
    K : X × X ↦ R , ∀ x , z ∈ X 有 K ( x , z ) 。 如 果 ∃ ϕ : X ↦ H , ϕ ∈ H ( H 为 希 尔 伯 特 空 间 ) s . t .    K ( x , x ′ ) = ϕ ( x i ) T ϕ ( x j ) = < ϕ ( x i ) , ϕ ( x j ) > 那 么 称 K ( x , z ) 是 正 定 核 函 数 (7.2.1) \color{red}K: \mathcal{X}\times \mathcal{X}\mapsto \mathbb R, \forall x, z \in \mathcal{X}有K(x, z)。 \\如果\exists \phi :\mathcal{X} \mapsto \mathcal{H},\phi \in \mathcal{H}(\mathcal{H}为希尔伯特空间)\\s.t.\; K(x,x^{'})=\phi (x_{i})^{T}\phi (x_{j})=<\phi (x_{i}),\phi (x_{j})>\\那么称K(x,z)是正定核函数\tag{7.2.1} K:X×XR,x,zXK(x,z)ϕ:XH,ϕH(H)s.t.K(x,x)=ϕ(xi)Tϕ(xj)=<ϕ(xi),ϕ(xj)>K(x,z)(7.2.1)
    2.希尔伯特空间
    Hilbert空间( 完 备 的 , 可 能 是 无 限 维 的 , 被 赋 予 内 积 的 , 线 性 空 间 \color{red}完备的,可能是无限维的,被赋予内积的,线性空间 ,,,线),如果去掉内积这个条件我们简单地称为核函数。
    • 完备的
      对极限操作是封闭的,即 lim ⁡ n → ∞ K n = K ∈ H \lim _{n\to \infty}K_n =K \in \mathcal{H} limnKn=KH
    • 被赋予内积的
      被赋予内积的,满足如下3个条件则满足内积运算
      • 对称性: < f , g > = < g , f > <f,g>=<g,f> <f,g>=<g,f>
      • 正定性: < f , f > ≥ 0 且 “ = ” ⇔ f = 0 <f,f>\geq 0且“=”\Leftrightarrow f=0 <f,f>0=f=0
      • 线性: < r 1 f 1 + r 2 f 2 , g > = r 1 < f 1 , g > + r 2 < f 2 , g > <r_{1}f_{1}+r_{2}f_{2},g>=r_{1}<f_{1},g>+r_{2}<f_{2},g> <r1f1+r2f2,g>=r1<f1,g>+r2<f2,g>
    • 线性空间
      • u + v = v + u ,   ∀ u , v ∈ V \boldsymbol{u} + \boldsymbol{v} = \boldsymbol{v} + \boldsymbol{u},\ \forall \boldsymbol{u},\boldsymbol{v}\in \boldsymbol{V} u+v=v+u, u,vV
      • ( u + v ) + w = u + ( v + w ) ,   ∀ u , v , w ∈ V (\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}=\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w}),\ \forall \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}\in \boldsymbol{V} (u+v)+w=u+(v+w), u,v,wV
      • T h e r e    i s    a n    e l e m e n t 0 ∈ V s u c h    t h a t v + 0 = v f o r a l l v ∈ V There\;is\;an\;element \boldsymbol{0}\in\boldsymbol{V} such\; that \boldsymbol{v} + \boldsymbol{0} = \boldsymbol{v} for all \boldsymbol{v}\in \boldsymbol{V} Thereisanelement0Vsuchthatv+0=vforallvV
      • F o r    e a c h v ∈ V t h e r e    i s    a n    e l e m e n t − v s u c h t h a t v + ( − v ) = 0 For\;each \boldsymbol{v}\in \boldsymbol{V} there\;is\;an\;element -\boldsymbol{v} such that \boldsymbol{v}+(-\boldsymbol{v})=\boldsymbol{0} ForeachvVthereisanelementvsuchthatv+(v)=0
      • c ( u + v ) = c u + c v ,   ∀ u , v ∈ V a n d c ∈ F c(\boldsymbol{u}+\boldsymbol{v})=c\boldsymbol{u}+c\boldsymbol{v},\ \forall u,v\in\boldsymbol{V} and c\in\mathbb{F} c(u+v)=cu+cv, u,vVandcF
      • ( a + b ) v = a v + b v ,   ∀ a , b ∈ F a n d v ∈ V (a+b)\boldsymbol{v}=a\boldsymbol{v}+b\boldsymbol{v},\ \forall a,b\in\mathbb{F} and \boldsymbol{v}\in\boldsymbol{V} (a+b)v=av+bv, a,bFandvV
      • ( a b ) v = a ( b v ) ,   ∀ a , b ∈ F    a n d    v ∈ V (ab)\boldsymbol{v}=a(b\boldsymbol{v}),\ \forall a,b\in\mathbb{F}\;and \;\boldsymbol{v}\in\boldsymbol{V} (ab)v=a(bv), a,bFandvV
      • 1 v = v ,   ∀ v ∈ V 1\boldsymbol{v}=\boldsymbol{v},\ \forall \boldsymbol{v}\in\boldsymbol{V} 1v=v, vV

7.2.2 精准定义2

  1. 定义2
    K : X × X ↦ R , ∀ x , z ∈ X 有 K ( x , z ) 。 如 果 K ( x , z ) 满 足 以 下 条 件 : ①    对 称 性 ; ②    正 定 性 . 那 么 称 K ( x , z ) 是 正 定 核 函 数 (7.2.2) \color{red}K: \mathcal{X}\times \mathcal{X}\mapsto \mathbb R, \forall x, z \in \mathcal{X}有K(x, z)。 \\如果K(x, z)满足以下条件:①\;对称性;②\;正定性.\\那么称K(x,z)是正定核函数\tag{7.2.2} K:X×XR,x,zXK(x,z)K(x,z);.K(x,z)(7.2.2)
    • 对称性 ⇔ K ( x , z ) = K ( z , x ) ; \Leftrightarrow K(x,z)=K(z,x); K(x,z)=K(z,x);
    • 正定性 ⇔ 任 取 N 个 元 素 x 1 , x 2 , ⋯   , x N ∈ X \Leftrightarrow任取N个元素x_{1},x_{2},\cdots ,x_{N}\in \mathcal{X} Nx1,x2,,xNX
      对应的 G r a m    m a t r i x    K = [ K ( x i , x j ) ] ( K ∈ R N × N ) 是 半 正 定 的 Gram\; matrix\; K=[K(x_{i},x_{j})](K\in \mathbb{R}^{N\times N})是半正定的 GrammatrixK=[K(xi,xj)](KRN×N)
  2. 关系
    若定义一为已知条件,那么我们需要证明定义二,即证明:
    K ( x , z ) = ( ϕ ( x ) T ϕ ( z ) ) ⇔ 对 称 性 + 矩 阵 K 半 正 定 (7.2.3) \color{red}K(x,z)=(\phi (x)^{T}\phi (z))\Leftrightarrow对称性+矩阵K半正定\tag{7.2.3} K(x,z)=(ϕ(x)Tϕ(z))+K(7.2.3)

7.3 正定核充要条件-必要性证明

  1. 正定核函数的两个定义
    • 定义1
      K : X × X ↦ R , ∀ x , z ∈ X 有 K ( x , z ) 。 如 果 ∃ ϕ : X ↦ H , ϕ ∈ H ( H 为 希 尔 伯 特 空 间 ) s . t .    K ( x , x ′ ) = ϕ ( x i ) T ϕ ( x j ) = < ϕ ( x i ) , ϕ ( x j ) > 那 么 称 K ( x , z ) 是 正 定 核 函 数 \color{red}K: \mathcal{X}\times \mathcal{X}\mapsto \mathbb R, \forall x, z \in \mathcal{X}有K(x, z)。 \\如果\exists \phi :\mathcal{X} \mapsto \mathcal{H},\phi \in \mathcal{H}(\mathcal{H}为希尔伯特空间)\\s.t.\; K(x,x^{'})=\phi (x_{i})^{T}\phi (x_{j})=<\phi (x_{i}),\phi (x_{j})>\\那么称K(x,z)是正定核函数 K:X×XR,x,zXK(x,z)ϕ:XH,ϕH(H)s.t.K(x,x)=ϕ(xi)Tϕ(xj)=<ϕ(xi),ϕ(xj)>K(x,z)
    • 定义2
      K : X × X ↦ R , ∀ x , z ∈ X 有 K ( x , z ) 。 如 果 K ( x , z ) 满 足 以 下 条 件 : ①    对 称 性 ; ②    正 定 性 . 那 么 称 K ( x , z ) 是 正 定 核 函 数 \color{red}K: \mathcal{X}\times \mathcal{X}\mapsto \mathbb R, \forall x, z \in \mathcal{X}有K(x, z)。 \\如果K(x, z)满足以下条件:①\;对称性;②\;正定性.\\那么称K(x,z)是正定核函数 K:X×XR,x,zXK(x,z)K(x,z);.K(x,z)
    • 对称性 ⇔ K ( x , z ) = K ( z , x ) ; \Leftrightarrow K(x,z)=K(z,x); K(x,z)=K(z,x);
    • 正定性 ⇔ 任 取 N 个 元 素 x 1 , x 2 , ⋯   , x N ∈ X \Leftrightarrow任取N个元素x_{1},x_{2},\cdots ,x_{N}\in \mathcal{X} Nx1,x2,,xNX
      对应的 G r a m    m a t r i x    K = [ K ( x i , x j ) ] ( K ∈ R N × N ) 是 半 正 定 的 Gram\; matrix\; K=[K(x_{i},x_{j})](K\in \mathbb{R}^{N\times N})是半正定的 GrammatrixK=[K(xi,xj)](KRN×N)
      我们根据公式(7.2.3),由定义1推定义2(证明 必 要 性 是 充 分 条 件 。 充 分 性 是 必 要 条 件 \color{blue}必要性是充分条件。充分性是必要条件 )。
  2. 必要性证明( ⇒ \Rightarrow )
    • 对称性证明
      K ( x , z ) = < ϕ ( x ) , ϕ ( z ) > K ( z , x ) = < ϕ ( z ) , ϕ ( x ) > 又 内 积 具 有 对 称 性 , 即 < ϕ ( x ) , ϕ ( z ) > = < ϕ ( z ) , ϕ ( x ) > ∴ K ( x , z ) = K ( z , x ) ∴ K ( x , z ) 满 足 对 称 性 K(x,z)=<\phi (x),\phi (z)>\\ K(z,x)=<\phi (z),\phi (x)>\\ 又内积具有对称性,即<\phi (x),\phi (z)>=<\phi (z),\phi (x)>\\ \therefore K(x,z)=K(z,x)\\ \therefore K(x,z)满足对称性 K(x,z)=<ϕ(x),ϕ(z)>K(z,x)=<ϕ(z),ϕ(x)><ϕ(x),ϕ(z)>=<ϕ(z),ϕ(x)>K(x,z)=K(z,x)K(x,z)
    • 正定性证明
      • 证明矩阵半正定的两种方法:
        ① 特 征 值 ≥ 0 ② ∀ α ∈ R n , α T A α ≥ 0 \color{red}①特征值\geq 0\\ ②\forall \alpha \in \mathbb{R}^{n},\alpha ^{T}A\alpha \geq 0 0αRn,αTAα0
      • 我们用方法2,则欲证 G r a m    m a t r i x : K = [ K ( x i , x j ) ] N × N Gram\; matrix:K=[K(x_{i},x_{j})]_{N\times N} Grammatrix:K=[K(xi,xj)]N×N半正定,即证: ∀ α ∈ R n , α T K α ≥ 0 \forall \alpha \in \mathbb{R}^{n},\alpha ^{T}K\alpha \geq 0 αRn,αTKα0
        ∵ α T K α = ( α 1 α 2 ⋯ α N ) 1 × N [ a 11 a 12 ⋯ a 1 N a 21 a 22 ⋯ a 2 N ⋮ ⋮ ⋱ ⋮ a N 1 a N 2 ⋯ a N N ] N × N ( α 1 α 2 ⋮ α N ) N × 1 = ∑ i = 1 N ∑ j = 1 N α i α j K i j = ∑ i = 1 N ∑ j = 1 N α i α j < ϕ ( x i ) , ϕ ( x j ) > = ∑ i = 1 N ∑ j = 1 N α i α j ϕ ( x i ) T ϕ ( x j ) = ∑ i = 1 N α i ϕ ( x i ) T ∑ j = 1 N α j ϕ ( x j ) = [ ∑ i = 1 N α i ϕ ( x i ) ] T ∑ j = 1 N α j ϕ ( x j ) = < ∑ i = 1 N α i ϕ ( x i ) , ∑ j = 1 N α j ϕ ( x j ) > = ∥ ∑ i = 1 N α i ϕ ( x i ) ∥ 2 ≥ 0 ∴ K 是 半 正 定 的 。 \because \alpha ^{T}K\alpha =\begin{pmatrix} \alpha _{1} & \alpha _{2} & \cdots & \alpha _{N} \end{pmatrix}_{1\times N}\begin{bmatrix} a_{11}& a_{12}& \cdots & a_{1N}\\ a_{21}& a_{22}& \cdots & a_{2N}\\ \vdots & \vdots & \ddots & \vdots \\ a_{N1}& a_{N2}& \cdots & a_{NN} \end{bmatrix}_{N\times N}\begin{pmatrix} \alpha _{1}\\ \alpha _{2}\\ \vdots \\ \alpha _{N} \end{pmatrix}_{N\times 1}\\ =\sum_{i=1}^{N}\sum_{j=1}^{N}\alpha _{i}\alpha _{j}K_{ij} =\sum_{i=1}^{N}\sum_{j=1}^{N}\alpha _{i}\alpha _{j}<\phi (x_{i}),\phi (x_{j})>\\ =\sum_{i=1}^{N}\sum_{j=1}^{N}\alpha _{i}\alpha _{j}\phi (x_{i})^{T}\phi (x_{j}) =\sum_{i=1}^{N}\alpha _{i}\phi (x_{i})^{T}\sum_{j=1}^{N}\alpha _{j}\phi (x_{j})\\ =\begin{bmatrix} \sum_{i=1}^{N}\alpha _{i}\phi (x_{i})\end{bmatrix}^{T}\sum_{j=1}^{N}\alpha _{j}\phi (x_{j}) =<\sum_{i=1}^{N}\alpha _{i}\phi (x_{i}),\sum_{j=1}^{N}\alpha _{j}\phi (x_{j})>\\ =\left \|\sum_{i=1}^{N}\alpha _{i}\phi (x_{i}) \right \|^{2}\geq 0\\ \therefore K是半正定的。 αTKα=(α1α2αN)1×Na11a21aN1a12a22aN2a1Na2NaNNN×Nα1α2αNN×1=i=1Nj=1NαiαjKij=i=1Nj=1Nαiαj<ϕ(xi),ϕ(xj)>=i=1Nj=1Nαiαjϕ(xi)Tϕ(xj)=i=1Nαiϕ(xi)Tj=1Nαjϕ(xj)=[i=1Nαiϕ(xi)]Tj=1Nαjϕ(xj)=<i=1Nαiϕ(xi),j=1Nαjϕ(xj)>=i=1Nαiϕ(xi)20K
  3. 充分性证明( ⇐ \Leftarrow )
    正定性证明,我们用方法1.
    • 对K进⾏特征分解,对于对称矩阵 K = V Λ V T K=V\Lambda V^{T} K=VΛVT,那么令 ϕ ( x i ) = λ i V i \phi (x_{i})=\sqrt{\lambda _{i}}V_{i} ϕ(xi)=λi Vi,其中 V i V_{i} Vi是特征向量;
    • 于是就构造了 K ( x , z ) = λ i λ j V i T V j K(x,z)=\sqrt{\lambda _{i}\lambda _{j}}V_{i}^{T}V_{j} K(x,z)=λiλj ViTVj。所以特征值一定大于等于0!

7.4 总结

  1. 引入核函数主要作用有如下两点:
    • 高维转换(解决非线性可分问题)
    • 内积运算(简化运算)
  2. 原问题
    { m i n λ    1 2 ∑ i = 1 N ∑ j = 1 N λ i λ j y i y j x i T x j − ∑ i = 1 N λ i , i = 1 , 2 , ⋯   , N λ i ≥ 0 , i = 1 , 2 , ⋯   , N (7.1.1) \left\{\begin{matrix} \underset{\lambda }{min}\; \frac{1}{2}\sum_{i=1}^{N}\sum_{j=1}^{N}\lambda _{i}\lambda _{j}y_{i}y_{j}{\color{Red}{x_{i}^{T}x_{j}}}-\sum_{i=1}^{N}\lambda _{i},i=1,2,\cdots ,N \\ \lambda _{i}\geq 0,i=1,2,\cdots ,N \end{matrix}\right.\tag{7.1.1} {λmin21i=1Nj=1NλiλjyiyjxiTxji=1Nλi,i=1,2,,Nλi0,i=1,2,,N(7.1.1)
  3. 核方法
    { m i n λ    1 2 ∑ i = 1 N ∑ j = 1 N λ i λ j y i y j ϕ ( x i ) T ϕ ( x j ) − ∑ i = 1 N λ i , i = 1 , 2 , ⋯   , N λ i ≥ 0 , i = 1 , 2 , ⋯   , N (7.1.2) \left\{\begin{matrix} \underset{\lambda }{min}\; \frac{1}{2}\sum_{i=1}^{N}\sum_{j=1}^{N}\lambda _{i}\lambda _{j}y_{i}y_{j}{\color{Red}{\phi (x_{i})^{T}\phi (x_{j})}}-\sum_{i=1}^{N}\lambda _{i},i=1,2,\cdots ,N \\ \lambda _{i}\geq 0,i=1,2,\cdots ,N \end{matrix}\right.\tag{7.1.2} {λmin21i=1Nj=1Nλiλjyiyjϕ(xi)Tϕ(xj)i=1Nλi,i=1,2,,Nλi0,i=1,2,,N(7.1.2)
  4. 正定核函数定义
    公式(7.2.1)和(7.2.2)
  5. 常见核函数
    在这里插入图片描述
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值