这个问题可以使用动态规划和备忘录的方法来解决。我们可以使用一个数组dp来存储已经计算过的结果,避免重复计算。dp[i]表示i个叶子节点可以构造的完全二叉树的数量。
首先,我们知道当只有一个叶子节点时,只有一种方式,所以dp[1] = 1。
然后,对于每一个i(i>=2),我们可以将问题分解为两个子问题,一个子问题包含k个叶子节点,另一个子问题包含i-k个叶子节点。我们可以通过遍历所有可能的k来计算dp[i]。
以下是对应的C++代码:
#include <iostream>
using namespace std;
int main() {
int n;
cin >> n;
long long dp[21] = {0};
dp[0] = dp[1] = 1;
for (int i = 2; i <= n; i++) {
for (int j = 1; j < i; j++) {
dp[i] += dp[j] * dp[i-j];
}
}
cout << dp[n] << endl;
return 0;
}
这段代码首先读取输入的n,然后初始化dp数组。接着,它使用两个嵌套的for循环来计算dp[i]。最后,它输出dp[n],即n个叶子节点可以构造的完全二叉树的数量。