11082 完全二叉树的种类

这个问题可以使用动态规划和备忘录的方法来解决。我们可以使用一个数组dp来存储已经计算过的结果,避免重复计算。dp[i]表示i个叶子节点可以构造的完全二叉树的数量。

首先,我们知道当只有一个叶子节点时,只有一种方式,所以dp[1] = 1。

然后,对于每一个i(i>=2),我们可以将问题分解为两个子问题,一个子问题包含k个叶子节点,另一个子问题包含i-k个叶子节点。我们可以通过遍历所有可能的k来计算dp[i]。

以下是对应的C++代码:

#include <iostream>
using namespace std;

int main() {
    int n;
    cin >> n;
    long long dp[21] = {0};
    dp[0] = dp[1] = 1;
    for (int i = 2; i <= n; i++) {
        for (int j = 1; j < i; j++) {
            dp[i] += dp[j] * dp[i-j];
        }
    }
    cout << dp[n] << endl;
    return 0;
}

这段代码首先读取输入的n,然后初始化dp数组。接着,它使用两个嵌套的for循环来计算dp[i]。最后,它输出dp[n],即n个叶子节点可以构造的完全二叉树的数量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值