这个问题可以通过排序和配对来解决。首先,我们将数组排序,然后我们将数组的第一个元素和最后一个元素配对,第二个元素和倒数第二个元素配对,以此类推。这样,我们可以得到n/2个和,然后我们找出这些和中的最大值和最小值,它们的差就是我们要找的最小差值。
以下是C++代码实现:
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> arr(n);
for (int i = 0; i < n; i++) {
cin >> arr[i];
}
sort(arr.begin(), arr.end());
int min_val = arr[0] + arr[n - 1];
int max_val = min_val;
for (int i = 1; i < n / 2; i++) {
int sum = arr[i] + arr[n - i - 1];
min_val = min(min_val, sum);
max_val = max(max_val, sum);
}
cout << max_val - min_val << endl;
return 0;
}
在这段代码中,我们首先读取输入的数组长度n和数组元素,然后我们对数组进行排序。然后我们遍历数组的前n/2个元素,对于每个元素,我们将它和对应的配对元素的和计算出来,然后更新最大值和最小值。最后,我们输出最大值和最小值的差,这就是我们要找的最小差值。
这段代码的时间复杂度是O(n log n),其中n是数组的长度。因为我们需要对数组进行排序,这个操作的时间复杂度是O(n log n)。然后我们需要遍历数组的前n/2个元素,这个操作的时间复杂度是O(n)。所以总的时间复杂度是O(n log n)。