【LLM大模型】5分钟理透LangChain的Chain

LangChain几乎是LLM应用开发的第一选择,它的野心也比较大,它致力于将自己打造成LLM应用开发的最大社区。而LangChain最核心的部分非 Chain 莫属。

Chain到底是个啥,概念比较模糊,像雾像雨又像风,这篇文章将带你快速理透 LangChain 中的 Chain 概念。

1. Chain是核心

LangChain的Chain到底是什么?一句话总结:Chain是指对 LangChain 多个组件的一系列调用。

再看看官网的解释:Chain是指调用的序列 - 无论是调用 LLM、工具还是数据预处理步骤,主要支持的方法是使用 LCEL。

官网里还提到了LCEL,LCEL是LangChain 表达式语言,是一种更加高效简介的链接 LangChain 组件的方式,也是官网推荐的方式。

从下图官网的描述,也可以看到,Chain可以是从最简单的“prompt + LLM”链 到 最复杂的链(运行了包含 100 多个步骤的链)。

2. 为什么需要Chain

我们所期待的LLM是能处理许多复杂任务,而非简单的一问一答,也不是简单的处理单一任务。

所以,最终我期待的LLM处理任务的流程应该是这样,它中间的复杂过程对用户来说是一个黑盒:

既然定位是完成复杂任务,那自然就需要通过某个机制将多个单一任务串起来,形成一个大的链条,多个步骤共同完成某个复杂任务。

***Chain可以将多个步骤连接到一起,最终完成各种复杂繁琐的任务。***这就是Chain存在的必要性了。我很喜欢LangChain的Logo,很形象地表达了这一思想。

Chain需要对多个组件一系列的调用或者一系列的串联,这样才能完成复杂任务。当然,我们也可以把 Chain 看作是流水线。通过使用 Chain,你可以将各个步骤定义为独立的模块,然后按顺序串联起来。这样不仅大大简化了代码逻辑,也使得整个流程更加直观和易于管理。

而LCEL的存在,也只是为了让构建链的过程更简单,让链的表达力更清晰更简单。

接下来,我将通过一个示例展示没有 Chain有Chain的2种实现方式,以便更清晰地理解 Chain 的价值。

3. 如果没有Chain

这里举个例子,比如:我们给LLM输入一段项目描述,让LLM给这个项目起一个名称Slogan

如果不使用Chain的话,我们可以这样实现。

ini
复制代码
# 本次需求:我们给LLM输入一段项目描述,让LLM给这个项目起一个名称和Slogan
# 以下是实现:

from langchain.prompts import PromptTemplate, ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser


proj_desc = """
    我们本次的项目是去森林里探险救援,我们有一个10人小队,
    我们要到达一个叫做“蝴蝶谷”的目的地,去那里解救一位被困的科学家。
    这期间我们可能会遇到许多危险,我们需要共同合作,互相帮助,历经磨难,才能到达目的地。
    我们的任务是要在5天内到达目的地并且救出探险家,才算完成这次探险,否则任务失败,我们将受到惩罚。
    出发前我们要各自准备好自己的装备和干粮,加油!
"""


def name_slogan_by_desc(project_desc):
    """
    根据项目描述,生成项目名称和slogan
    """
    str_parser = StrOutputParser()

    promt_template_project_name = "请你根据<desc>标签里的关于某个项目的描述,生成一个项目名称,只需要返回项目名称。<desc>{project_desc}</desc>"
    promt_project_name = PromptTemplate.from_template(promt_template_project_name)
    final_promt_project_name = promt_project_name.invoke({"project_desc": project_desc})
    res_project_name = model.invoke(final_promt_project_name)
    parsed_res_project_name = str_parser.invoke(res_project_name)


    promt_template_slogan = "请你根据<desc>标签里的关于某个项目的描述,和这个项目的名称{project_name},给这个项目起一个slogan,slogan要求干脆简洁积极向上,只返回slogan。<desc>{project_desc}</desc>"
    promt_slogan = PromptTemplate.from_template(promt_template_slogan)
    final_promt_slogan = promt_slogan.invoke(
        {"project_desc": project_desc, "project_name": parsed_res_project_name}
    )
    response_slogan = model.invoke(final_promt_slogan)
    parsed_response_slogan = str_parser.invoke(response_slogan)


    final_result = {
        "project_name": parsed_res_project_name,
        "slogan": parsed_response_slogan,
    }
    return final_result

# 输入项目描述,输出项目名称和slogan
result = name_slogan_by_desc(proj_desc)
print(result)

执行结果如下:

arduino
复制代码
{'project_name': '蝴蝶谷救援行动', 'slogan': '拯救科学家,共同合作,蝴蝶谷等你来!'}

可以看到,实现过程比较繁琐,变量和代码也多,不够直观,很容易出错。这还只是简单场景,如果碰到复杂场景就更麻烦了。

4. 因为有了Chain

接下来,我们使用 LangChain 的 Chain 功能,来实现相同的功能。代码如下:

ini
复制代码
# 本次需求:我们给LLM输入一段项目描述,让LLM给这个项目起一个名称和Slogan
# 以下是实现:

from operator import itemgetter
from langchain.prompts import PromptTemplate, ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain.chains import LLMChain, SequentialChain

proj_desc = """
    我们本次的项目是去森林里探险救援,我们有一个10人小队,
    我们要到达一个叫做“蝴蝶谷”的目的地,去那里解救一位被困的科学家。
    这期间我们可能会遇到许多危险,我们需要共同合作,互相帮助,历经磨难,才能到达目的地。
    我们的任务是要在5天内到达目的地并且救出探险家,才算完成这次探险,否则任务失败,我们将受到惩罚。
    出发前我们要各自准备好自己的装备和干粮,加油!
"""

def name_slogan_by_desc(project_desc):
    """
    根据项目描述,生成项目名称和slogan
    """

    # 第1条链
    promt_template_project_name = "请你根据<desc>标签里的关于某个项目的描述,生成一个项目名称,只需要返回项目名称。<desc>{project_desc}</desc>"
    chain_one = LLMChain(
        llm=model,
        prompt=PromptTemplate.from_template(promt_template_project_name),
        output_parser=StrOutputParser(),
        output_key="project_name",
    )

    # 第2条链
    promt_template_slogan = "请你根据<desc>标签里的关于某个项目的描述,和这个项目的名称{project_name},给这个项目起一个slogan,slogan要求干脆简洁积极向上,只返回slogan。<desc>{project_desc}</desc>"
    chain_two = LLMChain(
        llm=model,
        prompt=PromptTemplate.from_template(promt_template_slogan),
        output_parser=StrOutputParser(),
        output_key="slogan",
    )

    # 串联两条链
    sequential_chain = SequentialChain(
        chains=[chain_one, chain_two],
        input_variables=["project_desc"],
        output_variables=["project_name", "slogan"],
    )
    final_res = sequential_chain(project_desc)

    final_result = {
        "project_name": final_res["project_name"],
        "slogan": final_res["slogan"],
    }
    return final_result

# 输入项目描述,输出项目名称和slogan
result = name_slogan_by_desc(proj_desc)
print(result)

执行结果如下:

arduino
复制代码
{'project_name': '蝴蝶谷救援行动', 'slogan': '团结合作,共赴蝴蝶谷'}

可以看到代码更简洁,也很直观,当然,也可以使用LCEL让整个链条更加简洁清晰。

5. LCEL表达式

LCEL方式的代码如下:

python
复制代码
# 本次需求:我们给LLM输入一段项目描述,让LLM给这个项目起一个名称和Slogan
# 以下是实现:

from langchain.prompts import PromptTemplate, ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser

proj_desc = """
    我们本次的项目是去森林里探险救援,我们有一个10人小队,
    我们要到达一个叫做“蝴蝶谷”的目的地,去那里解救一位被困的科学家。
    这期间我们可能会遇到许多危险,我们需要共同合作,互相帮助,历经磨难,才能到达目的地。
    我们的任务是要在5天内到达目的地并且救出探险家,才算完成这次探险,否则任务失败,我们将受到惩罚。
    出发前我们要各自准备好自己的装备和干粮,加油!
"""

def name_slogan_by_desc(project_desc):
    """
    根据项目描述,生成项目名称和slogan
    """

    # 第1条链
    promt_template_project_name = "请你根据<desc>标签里的关于某个项目的描述,生成一个项目名称,只需要返回项目名称。<desc>{project_desc}</desc>"
    chain_one = (
        PromptTemplate.from_template(promt_template_project_name)
        | model
        | {"project_name": StrOutputParser(), "project_desc": lambda x: project_desc}
    )

    # 第2条链
    promt_template_slogan = "请你根据<desc>标签里的关于某个项目的描述,和这个项目的名称{project_name},给这个项目起一个slogan,slogan要求干脆简洁积极向上,只返回slogan。<desc>{project_desc}</desc>"
    chain_two = (
        PromptTemplate.from_template(promt_template_slogan)
        | model
        | {"slogan": StrOutputParser(), "project_info": lambda x: chain_one}
    )

    # 串联两条链
    final_chain = chain_one | chain_two
    final_res = final_chain.invoke({"project_desc": project_desc})

    final_result = {
        "project_name": final_res["project_info"]["project_name"],
        "slogan": final_res["slogan"],
    }

    return final_result

# 输入项目描述,输出项目名称和slogan
result = name_slogan_by_desc(proj_desc)
print(result)

普通方式和LCEL方式的核心代码对比:

  • 普通方式

  • LCEL方式

6. 总结

本文主要聊了 LangChain 中的 Chain 概念。Chain 是 LangChain 中的核心组件,我们对多个组件的一系列调用就是Chain。

使用Chain可以让构建复杂的任务,更加清晰简洁。

如何系统的去学习AI大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

全套 《LLM大模型入门+进阶学习资源包↓↓↓ 获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

### LangChain框架概述 LangChain框架通过一系列开源库提供了丰富的功能,支持开发者快速构建、优化和部署大型语言模型(LLM)应用[^1]。该框架旨在简化自然语言处任务中的常见挑战,并提供灵活的工具来定制化解决方案。 #### 主要组成部分 - **langchain-core**: 这是整个生态系统的基础模块,包含了核心抽象类和其他基础结构元素,使得其他高级特性得以建立在其之上。 - **Callbacks**: 提供了一些过程回调函数,在执行特定操作期间可以触发这些事件处器来进行日志记录或其他辅助工作流管活动[^3]。 ### 关键概念解析 对于初学者来说,解以下几个基本术语非常重要: - **语言模型 (LLMs)**: 是指那些经过大量文本训练而具备解和生成人类语言能力的人工智能系统[^2]。它们构成了大多数现代NLP应用程序的核心部分。 - **提示工程**: 涉及设计有效的输入格式或指令序列给定的语言模型,以便获得预期的结果输出。良好的提示可以帮助提高响应的质量并引导对话方向。 ### 实现首个LangChain项目 动手实践总是最好的学习方式之一。下面是一个简单的例子展示如何设置环境以及创建最基础版本的应用程序——“Hello World”。 #### 设置开发环境 确保安装了Python运行时之后,可以通过pip命令轻松获取所需依赖项: ```bash pip install langchain ``` 接着初始化一个新的Python文件用于编写代码逻辑。 #### 编写简单示例 这里给出一段非常初级但完整的脚本作为起点: ```python from langchain import LangChain if __name__ == "__main__": chain = LangChain() response = chain.run("你好,世界!") print(response) ``` 这段代码展示了怎样加载预设配置好的链路实例(`LangChain`)并通过调用`run()`方法传递消息字符串从而得到回复内容。尽管这个案例相对直接明了,但它确实遵循着实际生产环境中更为复杂的交互模式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值