(中英双语)从零构建大模型:GitHub超44K Star的大模型教程(送PDF)

  2025 年以来,AI 大模型领域持续火热,从 DeepSeek、GPT-4、Claude 3 到 Gemini 2.0 等等,各家模型参数动辄千亿级,能力日新月异。

  • 在应用层,RAG、Agent、ReAct、ToolFormer、MCP、Agent2Agent 等框架百花齐放;

  • 在部署层,轻量化、蒸馏与 LoRA 微调成为新趋势;而在研究社区,“推理能力”、“长期记忆”、“多模态融合”成为讨论焦点。

然而,尽管我们每天都在讨论提示工程、RAG pipeline、embedding vector、MCP、Agent2Agent 和工具调用,真正从头理解并掌握大模型(LLM)的人却凤毛麟角。我们知道 GPT 很强,但却不知道它为什么强;我们能用 LangChain,但无法说清 Transformer 的每一层结构。

如果你也有这样的技术焦虑——即想要真正理解一个 LLM 的构建细节,并掌握其底层实现方式,那么接下来的这本书,值得你从头到尾读上三遍。

一本书,带你从零实现大模型

《Build a Large Language Model (From Scratch)》 是机器学习领域权威作者 Sebastian Raschka 的最新力作。

这老哥在 X 上有超过 30 万粉丝!他曾出版过畅销书《Python 机器学习》,拥有极强的“代码+理论”教学功底。这一次,他带领读者用 PyTorch 从零搭建一个完整的 LLM 系统。

图片

这本书不仅讲解了 Transformer 的核心机制,更配备了高质量的开源代码仓库,让你真正“看得懂 + 跑得通 + 改得动”。这个 GitHub 仓库目前斩获 44.1K 的 Star!

https://github.com/rasbt/LLMs-from-scratch

图片

内容结构:七大模块覆盖全流程

书籍围绕 LLM 的完整生命周期设计,共分为三大阶段:

图片

七个章节:

1. 设计与初始化

模型架构、tokenizer、embedding、位置编码

2. 预处理与数据流水线

文本分块(chunking)、清洗与批处理

3. Transformer 模型构建

Attention、Multi-head、LayerNorm 等详解

4. 文本生成策略

从 Greedy 到 Top-k/Top-p,一网打尽

5. 大规模预训练

训练目标、学习率调度、梯度累积等工程细节

6. 下游微调实践

SFT、RLHF 的微调流程与训练技巧

7. 安全与指令对齐

Instruction Tuning 与有害输出的控制手段

每个章节都配有详实代码、图解原理与实验输出,便于快速上手与复现。

实践特色:不仅懂原理,更能动手训练

与市面上“纸上谈兵”的 LLM 入门书不同,本书有以下几个亮点:

  • 代码实战导向:你将在自己电脑上构建出一个 GPT-2 等价模型,并运行文本生成与下游任务。

  • 工程细节完整:包括混合精度、学习率调度、显存优化与分布式训练,完整覆盖训练全过程。

  • 官方仓库维护活跃:核心模块拆分合理,便于复用、扩展或改写。

  • 社区生态良好:已有多语言实现版本(如 Rust、Candle、JAX),社区贡献活跃。

为什么要看这本书?

✅ 真正理解 Transformer

而不是“知道有 Attention 就行”。通过亲手实现每一个子模块(Self-Attention、前馈网络、残差连接、LayerNorm),你将从底层建立起对大模型架构的认知。

✅ 从零构建自己的 LLM

不依赖 huggingface,也不只是调 API,而是动手完成数据准备、模型构建、训练、生成、微调,完成属于自己的“小 GPT”。

✅ 高性价比学习

不需要上千张 GPU,只需一张 8GB 显存显卡,你就能跑通训练全过程。

✅ 掌握底层能力,提升竞争力

在 LLM 技术飞速演进的今天,掌握“造模型”的能力,比“用模型”的 prompt skill 更有长远价值。真正能调参数、改结构、设计新模型的人,才是 AI 产业链顶端的人才。

推荐对象

  • 想深入掌握 LLM 工作机制的开发者/研究者

  • 有 Python 和 PyTorch 基础,希望从实战入门大模型的工程师

  • 教育者/讲师,寻找可教学、可落地的 LLM 架构课程

  • 创业者,想打造自研模型或轻量模型方案者

结语:掌握底层,才是与 AI 共舞的真正姿势

MCP 和 Agent2Agent 很火,Prompt 和 RAG 很强,但掌握 LLM 的底层逻辑,才是技术人最根本的护城河。如果你想真正走进大模型的内部世界,不再止步于“使用者”,而是成为一位“建造者”,这本书,就是你迈出第一步的最佳起点。

一书在手,从此心中无惧模型黑箱。

📚 读完这本书,你将拥有:

  • 自建 LLM 的实战经验

  • Transformer 架构的深度理解

  • 对模型安全、指令调优的系统认知

推荐指数:🌟🌟🌟🌟🌟

立即行动,为自己打造一台“属于你自己的 ChatGPT”。

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值