2025 年以来,AI 大模型领域持续火热,从 DeepSeek、GPT-4、Claude 3 到 Gemini 2.0 等等,各家模型参数动辄千亿级,能力日新月异。
-
在应用层,RAG、Agent、ReAct、ToolFormer、MCP、Agent2Agent 等框架百花齐放;
-
在部署层,轻量化、蒸馏与 LoRA 微调成为新趋势;而在研究社区,“推理能力”、“长期记忆”、“多模态融合”成为讨论焦点。
然而,尽管我们每天都在讨论提示工程、RAG pipeline、embedding vector、MCP、Agent2Agent 和工具调用,真正从头理解并掌握大模型(LLM)的人却凤毛麟角。我们知道 GPT 很强,但却不知道它为什么强;我们能用 LangChain,但无法说清 Transformer 的每一层结构。
如果你也有这样的技术焦虑——即想要真正理解一个 LLM 的构建细节,并掌握其底层实现方式,那么接下来的这本书,值得你从头到尾读上三遍。
一本书,带你从零实现大模型
《Build a Large Language Model (From Scratch)》 是机器学习领域权威作者 Sebastian Raschka 的最新力作。
这老哥在 X 上有超过 30 万粉丝!他曾出版过畅销书《Python 机器学习》,拥有极强的“代码+理论”教学功底。这一次,他带领读者用 PyTorch 从零搭建一个完整的 LLM 系统。
这本书不仅讲解了 Transformer 的核心机制,更配备了高质量的开源代码仓库,让你真正“看得懂 + 跑得通 + 改得动”。这个 GitHub 仓库目前斩获 44.1K 的 Star!
https://github.com/rasbt/LLMs-from-scratch
内容结构:七大模块覆盖全流程
书籍围绕 LLM 的完整生命周期设计,共分为三大阶段:
七个章节:
1. 设计与初始化
模型架构、tokenizer、embedding、位置编码
2. 预处理与数据流水线
文本分块(chunking)、清洗与批处理
3. Transformer 模型构建
Attention、Multi-head、LayerNorm 等详解
4. 文本生成策略
从 Greedy 到 Top-k/Top-p,一网打尽
5. 大规模预训练
训练目标、学习率调度、梯度累积等工程细节
6. 下游微调实践
SFT、RLHF 的微调流程与训练技巧
7. 安全与指令对齐
Instruction Tuning 与有害输出的控制手段
每个章节都配有详实代码、图解原理与实验输出,便于快速上手与复现。
实践特色:不仅懂原理,更能动手训练
与市面上“纸上谈兵”的 LLM 入门书不同,本书有以下几个亮点:
-
代码实战导向:你将在自己电脑上构建出一个 GPT-2 等价模型,并运行文本生成与下游任务。
-
工程细节完整:包括混合精度、学习率调度、显存优化与分布式训练,完整覆盖训练全过程。
-
官方仓库维护活跃:核心模块拆分合理,便于复用、扩展或改写。
-
社区生态良好:已有多语言实现版本(如 Rust、Candle、JAX),社区贡献活跃。
为什么要看这本书?
✅ 真正理解 Transformer
而不是“知道有 Attention 就行”。通过亲手实现每一个子模块(Self-Attention、前馈网络、残差连接、LayerNorm),你将从底层建立起对大模型架构的认知。
✅ 从零构建自己的 LLM
不依赖 huggingface,也不只是调 API,而是动手完成数据准备、模型构建、训练、生成、微调,完成属于自己的“小 GPT”。
✅ 高性价比学习
不需要上千张 GPU,只需一张 8GB 显存显卡,你就能跑通训练全过程。
✅ 掌握底层能力,提升竞争力
在 LLM 技术飞速演进的今天,掌握“造模型”的能力,比“用模型”的 prompt skill 更有长远价值。真正能调参数、改结构、设计新模型的人,才是 AI 产业链顶端的人才。
推荐对象
-
想深入掌握 LLM 工作机制的开发者/研究者
-
有 Python 和 PyTorch 基础,希望从实战入门大模型的工程师
-
教育者/讲师,寻找可教学、可落地的 LLM 架构课程
-
创业者,想打造自研模型或轻量模型方案者
结语:掌握底层,才是与 AI 共舞的真正姿势
MCP 和 Agent2Agent 很火,Prompt 和 RAG 很强,但掌握 LLM 的底层逻辑,才是技术人最根本的护城河。如果你想真正走进大模型的内部世界,不再止步于“使用者”,而是成为一位“建造者”,这本书,就是你迈出第一步的最佳起点。
一书在手,从此心中无惧模型黑箱。
📚 读完这本书,你将拥有:
-
自建 LLM 的实战经验
-
Transformer 架构的深度理解
-
对模型安全、指令调优的系统认知
推荐指数:🌟🌟🌟🌟🌟
立即行动,为自己打造一台“属于你自己的 ChatGPT”。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓