题目:[IJCAI2019]分解交
作者信息:
正文开始:
这篇文章主要思想是将交通动态分解为正常+异常两个组成部分,用异常部分代替总的交通动态进行异常检测任务,从而提升检测效果。更具体点讲,总的交通动态是由实时观测得到,至于分解出的两个因子:正常动态和异常动态,其中正常动态是由时间特征和空间特征共同决定,异常动态是由异常事件所决定。总的交通动态中去除掉正常因子部分,我们就认为剩下的是异常因子部分。最后用分解出的异常因子代替总的交通动态,输入到通用的异常检测器中,即可对某时间段内的某一区域的异常程度进行评分。
下面我们先看一下它的方法的详细操作:
分3个模块完成异常检测任务:
1)特征提取模块:挑选时间相关信息(如周几、时辰、天气等)构建temporal feature、设计了一种geo-embedding方法学习spatial feature;
2)正常动态估测模块:将temporal feature和spatial feature共同作为一个Neural Network的输入&#