题目:[IJCAI2019]分解交通动态用于交通异常检测

本文介绍了一种将交通动态分解为正常和异常两部分的方法,通过异常部分进行异常检测,提高了检测效果。方法包括特征提取、正常动态估测和异常评分三个模块,利用神经网络和地理嵌入技术,并在实验中展现出优越性能。
摘要由CSDN通过智能技术生成

题目:[IJCAI2019]分解交

作者信息:

正文开始:

这篇文章主要思想是将交通动态分解为正常+异常两个组成部分,用异常部分代替总的交通动态进行异常检测任务,从而提升检测效果。更具体点讲,总的交通动态是由实时观测得到,至于分解出的两个因子:正常动态和异常动态,其中正常动态是由时间特征和空间特征共同决定,异常动态是由异常事件所决定。总的交通动态中去除掉正常因子部分,我们就认为剩下的是异常因子部分。最后用分解出的异常因子代替总的交通动态,输入到通用的异常检测器中,即可对某时间段内的某一区域的异常程度进行评分。

下面我们先看一下它的方法的详细操作:

分3个模块完成异常检测任务:

1)特征提取模块:挑选时间相关信息(如周几、时辰、天气等)构建temporal feature、设计了一种geo-embedding方法学习spatial feature;

2)正常动态估测模块:将temporal feature和spatial feature共同作为一个Neural Network的输入&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值