拉格朗日乘子法

对此博客https://www.cnblogs.com/xingshansi/p/6628785.html的理解

 

结论:带约束的最小化问题可等价表示为无约束的最小化问题

证明:

KKT条件:1)原始不等式约束;2)原始等式约束;3)拉格朗日乘子非负性;4)互补松弛性;5)平稳点存在性

   1)f_i(x)\leqslant 0;  2) h_i(x)=0  3) \alpha_i\geqslant 0 ; 4)\alpha _i^*{f_i}(x^*) = 0, (i = 1,...,m); 5)\nabla {f_0}({x^*}) + \sum\limits_{i = 1}^m {\alpha _i^*\nabla {f_i}({x^*})} + \sum\limits_{i = 1}^n {\beta _i^*\nabla {h_i}({x^*})} = 0

基本思路:1)将给定问题形式为带约束条件的最小化问题;2)将带约束条件的最小化问题等价地表示为minmax形式的无约束条件优化问题; 3)检测KKT条件是否满足,若满足,则应用拉格朗日对偶法将minmax形式的无约束条件优化问题转化为maxmin形式的对偶问题; 4) 若转化后的对偶问题是凸优化问题,则此对偶问题的最优解就是原始问题的最优解;若转化后的对偶问题为一般优化问题(不等式函数约束是凸的, 等式约束是仿射的,而目标函数为一般函数),则对偶问题最优解值d*是最接近原始问题最优解值p*的,在一般情况下,二者之间存在着对偶间隙p*-d*, 并且p*-d*>0, 由于minmax(胖子里的瘦子)肯定大于maxmin(瘦子里的胖子)。

什么情况下才会有p*=d*? 答案是:原始优化问题是凸优化的(目标函数必须是凸的;不等式函数约束必须是凸的;等式约束必须是仿射的)且 Slater条件成立(f_i(x)>0(i=1,...,m), h_i(x)=0(i=1,2,...,n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值