POJ1273 Drainage Ditches【最大流、增广路算法Edmonds_Karp】

题目:

Description

Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 

Input

The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond.

Sample Input

5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10

Sample Output

50

思路:

题意:

下雨的时候约翰的田里总是积水,积水把他种的三叶草给淹了,他于是做了若干排水沟。给你一组数据,数据包括沟渠的数目和每条沟渠的最大容量(及水的最大流量),还有沟渠的交汇点的数目。约翰的田里的积水处是交汇点1,排出水的位置是最后一个交汇点。要求出从池塘流向河的最大流量。

现在有m个池塘(从1到m开始编号,1为源点,m为汇点),及n条水渠,给出这n条水渠所连接的池塘和所能流过的水量,求水渠中所能流过的水的最大容量

另外一个示例输入:

9 6
1 2 10
1 3 10
2 3 2
2 4 4
2 5 8
3 5 9
5 4 6
4 6 10
5 6 10

答案为:19

思考:

这里用的是增广路算法——Edmons-Karp。算法思想是,从零流(所有边的流量均为0)开始不断增加流量,保持每次增加流量后都满足容量限制、斜对称性和流量平衡3个条件。
1、容量限制: f[u,v]<=c[u,v]
2、反对称性:f[u,v] = - f[v,u]
3、流量平衡: 对于不是源点也不是汇点的任意结点,流入该结点的流量和等于流出该结点的流量和。
这个算法基于这样的一个事实:残量网络中任何一条从s到t的有向道路都对应一条原图中的增广路——只要求出该道路中所有残量的最小值d,把对应的所有边上的流量增加d即可,这个过程称为增广。不难验证,如果增广前的流量满足3个条件,增广后仍然满足。只要在残量网络中存在增广路,流量就可以增大;如果残量网络中不存在增广路,则当前流就是最大流。(寻找任意路径用的是广度搜索)

代码:

#include<iostream>
#include<queue>
using namespace std;
#define N 201
#define MaxInt 0x3f3f3f3f
int n,m,sum,s,t;//s,t为源点和汇点
int flow[N][N],cap[N][N],a[N],p[N];
//分别为:flow[u][v]为<u,v>流量、cap[u][v]为<u,v>容量、a[i]表示源点s到节点i的路径上的最小残留量、p[i]记录i的前驱
int min(int a,int b){
   return a<=b?a:b;
}
void Edmonds_Karp(){
   int i,u,v;
   queue<int>q;//队列,用bfs找增广路
   while(1){
      memset(a,0,sizeof(a));//每找一次,从源头开始,初始化一次
      a[s]=MaxInt;
      q.push(s);//源点入队
      while(!q.empty()){
         u=q.front();
         q.pop();
         for(v=1;v<=m;v++){
            if(!a[v]&&flow[u][v]<cap[u][v]){ //为真需要a[v]==0,即未在此次从源头开始的bfs中出现经过v点的流量;且<u,v>道路的容量仍大于流量,则找到新结点v
                p[v]=u; //记录v的父亲,便于下面从汇点开始回溯
                q.push(v); //加入队列
                a[v]=min(a[u],cap[u][v]-flow[u][v]);//s-v路径上的最小残量,a[u]是从上头来的流量,cap[u][v]-flow[u][v]为它仍能承载的流量。这样就求出<u,v>道路的流量,即流向下面的v点的流量。
            }
         }
       }
       if(a[m]==0)//找不到增广路,则当前流已经是最大流
          break;
       sum+=a[m];//流加上,更新从源点流出的总流量
       for(i=m;i!=s;i=p[i]){// //从汇点顺着这条增广路往回走
           flow[p[i]][i]+=a[m];//更新正向流量
           flow[i][p[i]]-=a[m];//更新反向流量
       }
   }
   printf("%d\n",sum);
}
int main(){
   int v,u,w;
   while(cin>>n){
		cin>>m;
        s=1;//从1开始
        t=m;//m为汇点
        sum=0;//记录最大流量
        memset(flow,0,sizeof(flow));//初始化
        memset(cap,0,sizeof(cap));
        for(int i=0;i<n;i++){
			cin>>u>>v>>w;
            cap[u][v]+=w;//注意图中可能出现相同的边
        }
        Edmonds_Karp();
    }
   return 0;
}

代码中为什么用0x3f3f3f3f来代表无穷大呢?理由如下:

很多人可能设为0x7fffffff,这个数的确是32-bit int的最大值,符号位为0,其他的都是1
但在很多情况下,0x7fffffff会出现错误,比如溢出,因为这样两个无穷大数相加会变成负数。
为了尽量避免以上的错误,我们可以改变无穷大的设定,可以将0x3f3f3f3f设为无穷大,0x3f3f3f3f的10进制表示为1061109567,这个数已达到10^9,足以表示无穷大,又0x3f3f3f3f+0x3f3f3f3f=2122219134,满足无穷大+无穷大仍为无穷大
当把无穷大设为0x3f3f3f3f时,在做初始化时也很方便,比如在初始化数组a时,可以使用
Memset(a,0x3f,sizeof(a)),因为0x3f3f3f3f的每个字节都是0x3f,如果使用0x7fffffff,需要循环赋值,耗费更多时间。

下面详细介绍一下EK算法

首先介绍网络流问题中的一些概念

残量网络:
为了更方便算法的实现,一般根据原网络定义一个残量网络。其中r(u,v)为残量网络的容量。
r(u,v) = c(u,v) – f(u,v)
通俗地讲:就是对于某一条边(也称弧),还能再有多少流量经过。

这是上面图的一个残量网络。残量网络(如果网络中一条边的容量为0,则认为这条边不在残量网络中。)
r(s,v1)=0,所以就不画出来了。另外举个例子:r(v1,s) = c(v1,s) – f(v1,s) = 0 – (-f(s,v1)) = f(s,v1) = 4.
其中像(v1,s)这样的边称为后向弧,它表示从v1到s还可以增加4单位的流量。
但是从v1到s不是和原网络中的弧的方向相反吗?显然“从v1到s还可以增加4单位流量”这条信息毫无意义。那么,有必要建立这些后向弧吗?
显然,第1个图中的画出来的不是一个最大流。
但是,如果我们把s -> v2 -> v1 -> t这条路径经过的弧的流量都增加2,就得到了该网络的最大流。
注意到这条路径经过了一条后向弧:(v2,v1)。
如果不设立后向弧,算法就不能发现这条路径。
*从本质上说,后向弧为算法纠正自己所犯的错误提供了可能性,它允许算法取消先前的错误的行为(让2单位的流从v1流到v2)
增广路
增广路定义:在残量网络中的一条从s通往t的路径,其中任意一条弧(u,v),都有r[u,v]>0。

如图绿色的即为一条增广路。
增广路算法
增广路算法:每次用BFS找一条最短的增广路径,然后沿着这条路径修改流量值(实际修改的是残量网络的边权)。当没有增广路时,算法停止,此时的流就是最大流。
增广路算法的效率
设n = |V|, m = |E|
每次增广都是一次BFS,效率为O(m),而在最坏的情况下需要n-2次增广(即除源点和汇点外其他点都没有连通,所有点都只和s与t连通)
所以,总共的时间复杂度为O(m*n),所以在稀疏图中效率还是比较高的。

EK算法的核心
反复寻找源点s到汇点t之间的增广路径,若有,找出增广路径上每一段[容量-流量]的最小值delta,若无,则结束。
在寻找增广路径时,可以用BFS来找,并且更新残留网络的值(涉及到反向边)。
而找到delta后,则使最大流值加上delta,更新为当前的最大流值。

这么一个图,求源点1,到汇点4的最大流

对于BFS找增广路:(INF代表最大整数,自己定义好0x3f3f3f3f)

1.         flow[1]=INF,pre[1]=0;

        源点1进队列,开始找增广路,capacity[1][2]=40>0,则flow[2]=min(flow[1],40)=40;

        capacity[1][4]=20>0,则flow[4]=min(flow[1],20)=20;

        capacity[2][3]=30>0,则flow[3]=min(folw[2]=40,30)=30;

        capacity[2][4]=30,但是pre[4]=1(已经在capacity[1][4]这遍历过4号点了)

        capacity[3][4].....

        当index=4(汇点),结束增广路的寻找

        传递回increasement(该路径的流),利用前驱pre寻找路径

路径也自然变成了这样:

2.flow[1]=INF,pre[1]=0;

 源点1进队列,开始找增广路,capacity[1][2]=40>0,则flow[2]=min(flow[1],40)=40;

        capacity[1][4]=0!>0,跳过

        capacity[2][3]=30>0,则flow[3]=min(folw[2]=40,30)=30;

        capacity[2][4]=30,pre[4]=2,则flow[2][4]=min(flow[2]=40,20)=20;

        capacity[3][4].....

        当index=4(汇点),结束增广路的寻找

        传递回increasement(该路径的流),利用前驱pre寻找路径

 图也被改成

  

接下来同理

这就是最终完成的图,最终sumflow=20+20+10=50(这个就是最大流的值)

PS,为什么要有反向边呢?

 

我们第一次找到了1-2-3-4这条增广路,这条路上的delta值显然是1。于是我们修改后得到了下面这个流。(图中的数字是容量)

这时候(1,2)和(3,4)边上的流量都等于容量了,我们再也找不到其他的增广路了,当前的流量是1。

但这个答案明显不是最大流,因为我们可以同时走1-2-4和1-3-4,这样可以得到流量为2的流。

那么我们刚刚的算法问题在哪里呢?问题就在于我们没有给程序一个”后悔”的机会,应该有一个不走(2-3-4)而改走(2-4)的机制。那么如何解决这个问题呢?回溯搜索吗?那么我们的效率就上升到指数级了。

而这个算法神奇的利用了一个叫做反向边的概念来解决这个问题。即每条边(I,j)都有一条反向边(j,i),反向边也同样有它的容量。

我们直接来看它是如何解决的:

在第一次找到增广路之后,在把路上每一段的容量减少delta的同时,也把每一段上的反方向的容量增加delta。即在Dec(c[x,y],delta)的同时,inc(c[y,x],delta)

我们来看刚才的例子,在找到1-2-3-4这条增广路之后,把容量修改成如下

这时再找增广路的时候,就会找到1-3-2-4这条可增广量,即delta值为1的可增广路。将这条路增广之后,得到了最大流2。

那么,这么做为什么会是对的呢?我来通俗的解释一下吧。

事实上,当我们第二次的增广路走3-2这条反向边的时候,就相当于把2-3这条正向边已经是用了的流量给”退”了回去,不走2-3这条路,而改走从2点出发的其他的路也就是2-4。(有人问如果这里没有2-4怎么办,这时假如没有2-4这条路的话,最终这条增广路也不会存在,因为他根本不能走到汇点)同时本来在3-4上的流量由1-3-4这条路来”接管”。而最终2-3这条路正向流量1,反向流量1,等于没有流量。

这就是这个算法的精华部分,利用反向边,使程序有了一个后悔和改正的机会。而这个算法和我刚才给出的代码相比只多了一句话而已。

至此,最大流Edmond-Karp算法介绍完毕。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值