PCL点云配准-ICP

标准ICP算法是一种点集对点集配准方法(基于点-点距离的算法),标准的ICP算法需要粗配,满足距离足够近这一条件之后才能进行精确配准。

选取目标点云P和源点云Q,按照一定的约束条件,找到最邻近点(pi,qi),然后计算出最优R和t(旋转和平移),使得误差函数最小,误差函数E(R,t):

基本算法流程:

1、在目标点云P中选取点集pi。

2、在源点云Q中选取对应的点集qi,使得||qi-pi||==min,也就是距离最小,这里的距离为欧氏距离。

3、计算旋转R和t,使得误差函数最小。

4、此时经过步骤3的R旋转和t平移后得到新的点集pi`,pi`=Rpi+t

5、计算pi`到点集qi的平均距离d。

6、如果d小于预设的阈值或者超过了迭代的次数,则停止,否则跳到步骤2,直到满足收敛条件。

 

搭配PCL点云配准中的FPFH特征是一种常用的方法。FPFH特征是一种由点对间的特征来描述点云的局部形状信息的描述子。它的计算步骤如下: 首先,根据输入的点云数据建立一个k-最近邻(k-Nearest Neighbor,kNN)搜索结构。 接下来,对每个点,找到其最近的k个邻居点。 然后,计算每个点的法向量,并对其进行归一化。 之后,将每个点与其邻域内的每个邻居点进行连接,形成一个点对集合。 最后,计算每个点对的一个特征向量,其中包含了方向角、高度角和距离差等信息。 将FPFH特征用于点云配准中的步骤如下: 首先,将待配准的源点云和目标点云分别计算出各自的FPFH特征。 然后,使用一种配准算法(例如ICP)对源点云和目标点云进行初始配准。 接下来,根据源点云和目标点云的FPFH特征,计算两者之间的匹配关系。 然后,根据匹配关系对源点云和目标点云进行进一步的配准,并优化其刚体变换的参数。 最后,根据优化后的刚体变换参数对源点云进行配准。 通过搭配PCL点云配准中的FPFH特征,可以有效地进行点云的配准任务。它能够提取出点云的局部形状信息,并通过匹配关系计算出点云的刚体变换参数,从而实现点云的准确配准。同时,FPFH特征具有计算简单、鲁棒性强等特点,可以适用于各种类型的点云数据。因此,搭配PCL点云配准之FPFH特征是一种常用且有效的方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值