# Constraints

Time Limit: 1 secs, Memory Limit: 32 MB

# Description

Hanoi Tower is a famous game invented by the French mathematician Edourard Lucas in 1883. We are given a tower of n disks, initially stacked in decreasing size on one of three pegs. The objective is to transfer the entire tower to one of the other pegs, moving only one disk at a time and never moving a larger one onto a smaller.

The best way to tackle this problem is well known: We first transfer the n-1 smallest to a different peg (by recursion), then move the largest, and finally transfer the n-1 smallest back onto the largest. For example, Fig 1 shows the steps of moving 3 disks from peg 1 to peg 3.

Now we can get a sequence which consists of the red numbers of Fig 1: 1, 2, 1, 3, 1, 2, 1. The ith element of the sequence means the label of the disk that is moved in the ith step. When n = 4, we get a longer sequence: 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1. Obviously, the larger n is, the longer this sequence will be.
Given an integer p, your task is to find out the pth element of this sequence.

# Input

The first line of the input file is T, the number of test cases.
Each test case contains one integer p (1<=p<10^100).

# Output

Output the pth element of the sequence in a single line. See the sample for the output format.
Print a blank line between the test cases.

# Sample Input

4
1
4
100
100000000000000

# Sample Output

Case 1: 1

Case 2: 3

Case 3: 3

Case 4: 15

#include <iostream>
#include <string.h>

int a[101];
int len;

int find(int start) {
if (a[len - 1] % 2 == 1)
return 0;

for (int d = start; d < len - 1; ++d) {
a[d + 1] += (a[d] % 2) * 10;
a[d] /= 2;
}
a[len - 1] /= 2;

if (a[start] == 0)
start++;
return 1 + find(start);
}

int main()
{
int test;
std::cin >> test;
std::string key;

for (int c = 1; c <= test; ++c) {
if (c != 1)
std::cout << std::endl;

std::cin >> key;
memset(a, 0, sizeof(a));
for (int d = 0; key[d] != '\0'; ++d)
a[d] = key[d] - '0';
len = key.length();

std::cout << "Case " << c << ": " << 1 + find(0) << std::endl;
}
return 0;
}

10-05 1047

10-31 739

11-26 2599

08-07 2140

05-22 7657

11-04 304

03-18 882

05-20 837

01-05 1367

04-18 1496