一 、数列
无穷多个数按照一定顺序排成一列叫数列。如:

二、数列的极限

回到刚才提到的四个数列,我们根据描述性定义”当 n 无限增大时“(即 n→∞ ),可以轻松推出数列 xn 的极限值:

实际上我们对描述性定义不算满意,因为它描述说:“......当 n 无限增大时, xn 无限接近于 a......" 那么究竟什么情况才算是“ xn无限接近于 a ”呢?离多远才算是”无限接近“呢?显然描述性定义的这种说法没有进行定量描述。


数列没有极限又称数列是发散的。
注:
1. ε 是任意的,只有这样才能表达 xn 无限接近于 a 。
2. ε 又是给定的,唯有给定,才能确定 N ,即 N 是与 ε 有关的。
3. N 不是唯一的。比如数列 {xn}={1−1/n} ,要使 |xn−1|<1/100 就要使得 n>N=100 ,即从 101 项开始,以后的所有项都满足|xn−1|<1/100。那么我们取 N=101 ,n>N=101 ,即从 102 项开始,以后的所有项也将必然都满足|Xn−1|<1/100。
当 n>N 时,满足 |xn−a|<ε ,亦即满足 a−ε<xn<a+ε 。也就是说从 N+1 开始,以后无穷多项都落在开区间 (a−ε,a+ε)内。

利用极限定义证明数列的极限





三、经典求极限题目



四、数列的极限的性质

1.极限唯一性:数列 {xn} 如果有极限,那么极限是唯一的。


2.收敛数列的有界性:如果 {xn} 收敛,则{xn}有界。
函数极限



函数极限题目

3.极限的局部保号性定理



函数极限与单侧极限的关系:当 x→x0 时,函数 f(x) 极限存在的充分必要条件是函数 f(x) 左极限、右极限都存在并且相等。


