10个ChatGPT、DeepSeek和Gemini提示词更快更好的学术文献阅读!

目录

AIGC助力快速阅读文献

10个文献阅读提示词


  大家好这里是学术Anan,官网👉AIWritePaper~

AIGC助力快速阅读文献

        在当今学术界,海量的论文如潮水般涌来,想要跟上最新研究进展简直比在图书馆里找到一本没被借走的热门小说还难!不过别担心,ChatGPT和横空出世的DeepSeek(包括 SciSpace、Scite AI、Litmaps、Yomu AI 等)这些人工智能助手就像是学术界的“超级英雄”,它们挥舞着“简化文献阅读”的魔法棒,为研究人员排忧解难。只要我们召唤它们,这些厉害的助手就能像专业的学术侦探一样,迅速提取关键信息,把复杂的论文变得像儿童读物一样简单易懂,还能第一时间把领域内的新文章、论文和研究送到你面前。有了它们你就能在学术的海洋里畅游无阻,而不是被淹没在论文的汪洋大海中。

Image

10个文献阅读提示词

1、快速总结

这个提示词能够让AI工具将论文的核心信息提炼成你最想了解的核心的东西。非常适合快速掌握主要思想并决定是否需要深入研究。

提示词: 

用3-5句话总结这篇论文,就像你在电梯里向同事解释一样。

2、提取主要发现用这个提示词来直奔研究的重点。对于快速评估论文对该领域的贡献是很重要的,决定了你想要重点研究这篇文献的那个研究重点。

提示词:

列出本文的前5个主要发现或结论,以及每个发现或结论的简要说明。

3、方法论分解

了解研究背后的研究方法对于评估是否需要继续深入研究这个方向的有效性有很大帮助。这个提示词可帮助快速掌握文献研究核心、设计思路和潜在的不足。

提示词:

用简单的术语解释本研究中使用的方法。解释它的优势和潜在的局限性是什么?
4、文献综述助理

这个提示词可以改变自己的文献综述或理解论文的学术背景。能够很好的追踪研究的知识脉络框架。

提示词:

确定文献综述部分引用的关键论文。对于每篇引用的论文,请提供一句话的摘要,说明它与当前研究的关系。

5、专业术语

学术论文可以密集地使用特定领域的语言。这个提示词会创建一个个性化的专业术语词汇表,更好的理解专业术语。

提示词:

列出本文中使用的任何专业术语,以及它们在术语中的解释和定义。

6、图标解释
这些AI工具还能解释文献中各种复杂的图表和表格!这个提示词可从可视化数据中提取有价值的见解,确保在阅读时不会错过一些关键信息。

提示词:

解释论文中图 X(或表 Y)的关键要点。它对整个研究有什么意义?

7、潜在影响
非常适合将理论研究与实际结果联系起来。这个提示词鼓励跳出论文思考,思考其更广泛的意义。

提示词:

这项研究在现实世界中的潜在影响或应用是什么?建议3-5种可能的影响。

8、跨学科联系
这个提示词非常适合培养跨学科思维和发现不同研究领域之间意想不到的联系。

提示词:

本文的发现或方法如何与[插入研究领域]相关?建议潜在的联系或应用。

9、方向预见

这个提示词标题一激发你自己的研究想法,或者更好地了解该领域内当前知识的差距。

提示词:

根据本文中的局限性和未回答的问题,为未来的研究提出3-5个可能的方向。

10、批判性的视角进行阅读

提示词鼓励批判性思维,帮助宝子们预测研究中的潜在弱点。非常适合为讨论或同行评审做准备。

提示词:

对本文的主要主张有哪些潜在的批评或反驳?作者会如何回应?

Image

        把这些建议融入你的学术阅读日常,就好比给大脑装上了涡轮增压器,不仅能让你的信息处理速度“嗖嗖”提升,还能让你在复杂概念的迷宫里轻松找到出口,新见解也会像春笋般“噌噌”冒出来。不过,可别忘了,这些AI工具就是你的学术小跟班,你才是大老板。永远保持那颗质疑的心,根据自己的需求“调教”这些提示,让你的工作成果闪闪发光,就像在学术舞台上戴着一顶璀璨的王冠。

### 比较GeminiChatGPT的特点差异 #### 架构设计 Gemini采用了一种混合专家(MoE, Mixture of Experts)架构,这种架构允许模型根据不同输入选择最合适的子网络来处理特定任务。相比之下,ChatGPT基于Transformer结构构建,该结构通过自注意力机制实现高效的并行计算能力[^1]。 #### 动态嵌入特性 在动态嵌入方面,虽然两者都支持上下文敏感型表示学习方法,但是具体实现有所不同。例如,在处理复杂语境下的词语意义变化时,Gemini可能更依赖于其内部模块化的设计来进行调整;而ChatGPT则利用预训练阶段积累的知识以及强大的泛化性能完成这一过程。 #### 用户模拟与建模功能 对于用户交互行为的理解支持上,两个平台均具备一定水平的用户模拟(User Simulation)及个性化建模(User Modeling)技术。不过,由于数据增强(Data Augmentation)策略上的区别,可能导致它们在实际应用场景中的表现有所差异。例如,Gemini可能会更加注重多源异构信息融合带来的增益效果,从而提供更为精准的服务体验[^2]。 #### 大规模语言模型的应用范围 作为大型语言模型(LLM),二者都能广泛应用于自然语言理解(NLU)、对话系统开发等领域。然而,鉴于各自的技术路线发展重点不同,所擅长的具体场景也会存在细微差别。比如,当涉及到生成式人工智能(Generative AI)任务时,拥有更强表达力的ChatGPT或许能够创造出更具创造性的内容;而在评估(Evaluation)某些特定类型的文本质量方面,经过专门优化后的Gemini也许会表现出更高的准确性。 ```python # 这里仅展示一个简单的对比框架,并未涉及具体的API调用或实验验证部分。 comparison = { "Architecture": {"Gemini": "Hybrid Expert", "ChatGPT": "Transformer"}, "Dynamic Embedding": {"Gemini": "Module-based Adjustment", "ChatGPT": "Pre-trained Generalization"}, "User Interaction": {"Gemini": "Multi-source Information Fusion", "ChatGPT": "-"} } print(comparison) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值