(远古笔记了,搬运上来留个纪念,当年学习的时候看了很多大佬的博客)
前言:前段时间学习了各种神经网络,今天做个小总结。以便以后自己复习!
一.RNN-循环神经网络
1.原理:根据“人的认知是基于过往的经验和记忆”这一观点提出。RNN之所以称为循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。如处理电影评论时,不能一次处理一条,而要将所有评论转化为一个大向量,再一次性处理。
2.结构:
每个方框可以看做是一个单元,每个单元做的事情也是一样的,用一句话解释RNN就是,一个单元结构重复使用。
3.应用:自然语言处理(NLP),文本生成(机器写小说),语言模型等。
4.简例:
(1)生成莎士比亚文集:我们利用RNN循环神经网络,生成新的文本。
代码如下:<1>定义模型参数
<2>恢复模型
<3>结果:
(2)识别mnist数据集:MNIST数据集是深度学习的经典入门demo,它是由6万张训练图片和1万张测试图片构成的,