深度学习-神经网络

本文总结了深度学习中的两种重要神经网络——RNN和CNN。介绍了RNN循环神经网络的原理、结构、应用,如自然语言处理和文本生成。同时,详细阐述了CNN卷积神经网络的工作原理,指出其在图像识别中的优势,并通过实例展示了CNN在手写数字识别任务中的应用,对比了传统神经网络和CNN的性能差异。
摘要由CSDN通过智能技术生成

(远古笔记了,搬运上来留个纪念,当年学习的时候看了很多大佬的博客)
前言:前段时间学习了各种神经网络,今天做个小总结。以便以后自己复习!

一.RNN-循环神经网络

1.原理:根据“人的认知是基于过往的经验和记忆”这一观点提出。RNN之所以称为循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。如处理电影评论时,不能一次处理一条,而要将所有评论转化为一个大向量,再一次性处理。

2.结构:
在这里插入图片描述
每个方框可以看做是一个单元,每个单元做的事情也是一样的,用一句话解释RNN就是,一个单元结构重复使用。

3.应用:自然语言处理(NLP),文本生成(机器写小说),语言模型等。

4.简例:

(1)生成莎士比亚文集:我们利用RNN循环神经网络,生成新的文本。

代码如下:<1>定义模型参数
在这里插入图片描述
<2>恢复模型
在这里插入图片描述
<3>结果:
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
(2)识别mnist数据集:MNIST数据集是深度学习的经典入门demo,它是由6万张训练图片和1万张测试图片构成的,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

皇儒无上

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值