第三章 流体动力学的基本方程组
3.6 理想流体的旋涡定理
研究旋涡动力学性质通常有两条途径。一条是直接研究涡量(即速度旋度)的随体变化规律,另一条是研究速度环量的随体变化规律,因为环量和涡密切相关。
3.6.1 亥姆霍兹方程
亥姆霍兹方程就是描述特定条件下理想流体涡量随体变化规律DΩ/Dt的方程。
显式包含速度旋度的兰姆方程:∂V/∂t+▽(V^2/2)-V×Ω=-▽p/ρ+f
,对兰姆方程取旋度,得▽×∂V/∂t+▽×[▽(V^2/2)]-▽×[▽(V^2/2)]-▽×(▽p/ρ)+▽×f
,式中,▽×∂V/∂t=∂Ω/∂t
。梯度矢量的旋度为零,则▽×[▽(V^2/2)]=0
,又根据矢量恒等式:▽×(V×Ω)=(▽·Ω)V+(Ω·▽)V-(▽·V)Ω-(V·▽)Ω
,且矢量旋度的散度为零,则▽·Ω=▽·(▽×V)=0
,上式可整理为DΩ/Dt-(Ω·▽)V+Ω(▽·V)=-▽×(▽p/ρ)+▽×f
。
上式即理想无黏流体涡量满足的运动微分方程。
若流体又是正压的,即▽p/ρ=▽P
,且彻体力有势,即f=-▽∏
,则▽×(▽p/ρ)=0,▽×f=0
,上式成为DΩ/Dt-(Ω·▽)V+Ω(▽·V)=0
。
上式为亥姆霍兹方程,描述了理想流体在流场正压及彻体力有势的条件下的涡量的随体变化规律,又称为理想流体的涡量方程。
又亥姆霍兹方程可知,初始无旋(Ω=0)的理想无黏流动,在流场正压及彻体力有势的条件下仍保持为无旋,因为DΩ/Dt=0。但初始有旋的流动,其涡量在运动过程可能会由于微团的拉压或弯曲而变化。这种变化与黏性无关,是惯性运动的产物。流动一旦由于某种原因成为有旋流后,拉伸和弯曲会进一步增加涡量。
3.6.2 开尔文环量守恒定理
通过上面的方程已知,即使是无黏流动,运动过程中流体的涡量也可能发生变化。不过理想无黏流动在正压和彻体力有势的条件下,环量τ(或涡通量I)保持不变,这是由开尔文(汤姆逊)环量守恒指出。
- 开尔文环量守恒定理
t=tm时刻在流体中取出一条由流体质点组成的封闭流体线L,再任取一个张在其上的流体面A,沿流体线的速度环量τ和通过流体面的涡通量l分别定义为τ=∮V·dl,I=∬Ω·ndA
。式中,dl为物质微元段(逆时针切线方向),dA为物质面A上的微元面(n为其外法线方向)。同一时刻的环量等于涡通量,即τ=I
。
环量τ是速度沿封闭流体线的积分,流体线是物质线,所以τ随时间的变化率是物质积分的随体导数:Dτ/Dt=D[∮V·dl]/Dt=∮DV·dt/Dt+∮V·D(dt)/Dt
。
可见环量变化是由两部分引起的:第一项是因为速度矢量随变化;第二项则是由于流体质点组成的物质线在运动过程中不断改变形状。不过第二项贡献其实为零。
由于dl=r-r0。式中r和r0分别为微元段dl两端点的矢径。则D(dl)/Dt=dV。式中,dV表示微元段两端点之间的速度微增量。所以有∮V·D(dl)/Dt=0
。上式用到了速度是连续的单值函数因而对封闭曲线为零的性质。随体导数成为Dτ/Dt=∮DV·dl/Dt
。
将欧拉方程代入上式,可以进一步得到:Dτ/Dt=-∮▽p·dl/rρ+∮f·dl
。
若流体又是正压的的且彻体力有势,即▽p/ρ=▽P
且f=-▽∏
,则-∮▽p·dl/ρ=-∮▽P·dl=0
,∮f·dl=-∮▽∏·dl=0
。
于是得Dtτ/Dt=0
。也就是说,对于理想无黏的正压流动,在彻体力有势、速度连续是,沿任意封闭流体线的环量不随时间变化,此即开尔文定理。又由于τ=I,所以流体线对应的流体面上的涡通量也保持不变。 - 拉格朗日定理
由开尔文环量守恒定理可以直接得到一个推论:在彻体力有势条件下的理想无黏正压流动,若在某一时刻流体的运动时无旋的,则在所有的时刻运动都是无旋的。这就是拉格朗日定理,也称为旋涡不生不灭定理。
由拉格朗日定理可知,如果流体满足理想无黏、正压、彻体力有势三个条件,则旋涡既不能产生,也不会消失。然而,上述三个条件只要有一个得不到满足,旋涡就既能产生也可能消失。
开尔文定理和朗格朗日定理是判断流动是否有