空气动力学(笔记自留)-第三章(下)

第三章 流体动力学的基本方程组

3.6 理想流体的旋涡定理

研究旋涡动力学性质通常有两条途径。一条是直接研究涡量(即速度旋度)的随体变化规律,另一条是研究速度环量的随体变化规律,因为环量和涡密切相关。

3.6.1 亥姆霍兹方程

亥姆霍兹方程就是描述特定条件下理想流体涡量随体变化规律DΩ/Dt的方程。
显式包含速度旋度的兰姆方程:∂V/∂t+▽(V^2/2)-V×Ω=-▽p/ρ+f,对兰姆方程取旋度,得▽×∂V/∂t+▽×[▽(V^2/2)]-▽×[▽(V^2/2)]-▽×(▽p/ρ)+▽×f,式中,▽×∂V/∂t=∂Ω/∂t。梯度矢量的旋度为零,则▽×[▽(V^2/2)]=0,又根据矢量恒等式:▽×(V×Ω)=(▽·Ω)V+(Ω·▽)V-(▽·V)Ω-(V·▽)Ω,且矢量旋度的散度为零,则▽·Ω=▽·(▽×V)=0,上式可整理为DΩ/Dt-(Ω·▽)V+Ω(▽·V)=-▽×(▽p/ρ)+▽×f
上式即理想无黏流体涡量满足的运动微分方程。
若流体又是正压的,即▽p/ρ=▽P,且彻体力有势,即f=-▽∏,则▽×(▽p/ρ)=0,▽×f=0,上式成为DΩ/Dt-(Ω·▽)V+Ω(▽·V)=0
上式为亥姆霍兹方程,描述了理想流体在流场正压及彻体力有势的条件下的涡量的随体变化规律,又称为理想流体的涡量方程。
又亥姆霍兹方程可知,初始无旋(Ω=0)的理想无黏流动,在流场正压及彻体力有势的条件下仍保持为无旋,因为DΩ/Dt=0。但初始有旋的流动,其涡量在运动过程可能会由于微团的拉压或弯曲而变化。这种变化与黏性无关,是惯性运动的产物。流动一旦由于某种原因成为有旋流后,拉伸和弯曲会进一步增加涡量。

3.6.2 开尔文环量守恒定理

通过上面的方程已知,即使是无黏流动,运动过程中流体的涡量也可能发生变化。不过理想无黏流动在正压和彻体力有势的条件下,环量τ(或涡通量I)保持不变,这是由开尔文(汤姆逊)环量守恒指出。

  1. 开尔文环量守恒定理
    t=tm时刻在流体中取出一条由流体质点组成的封闭流体线L,再任取一个张在其上的流体面A,沿流体线的速度环量τ和通过流体面的涡通量l分别定义为τ=∮V·dl,I=∬Ω·ndA。式中,dl为物质微元段(逆时针切线方向),dA为物质面A上的微元面(n为其外法线方向)。同一时刻的环量等于涡通量,即τ=I
    环量τ是速度沿封闭流体线的积分,流体线是物质线,所以τ随时间的变化率是物质积分的随体导数:Dτ/Dt=D[∮V·dl]/Dt=∮DV·dt/Dt+∮V·D(dt)/Dt
    可见环量变化是由两部分引起的:第一项是因为速度矢量随变化;第二项则是由于流体质点组成的物质线在运动过程中不断改变形状。不过第二项贡献其实为零。
    由于dl=r-r0。式中r和r0分别为微元段dl两端点的矢径。则D(dl)/Dt=dV。式中,dV表示微元段两端点之间的速度微增量。所以有∮V·D(dl)/Dt=0。上式用到了速度是连续的单值函数因而对封闭曲线为零的性质。随体导数成为Dτ/Dt=∮DV·dl/Dt
    将欧拉方程代入上式,可以进一步得到:Dτ/Dt=-∮▽p·dl/rρ+∮f·dl
    若流体又是正压的的且彻体力有势,即▽p/ρ=▽Pf=-▽∏,则-∮▽p·dl/ρ=-∮▽P·dl=0∮f·dl=-∮▽∏·dl=0
    于是得Dtτ/Dt=0。也就是说,对于理想无黏的正压流动,在彻体力有势、速度连续是,沿任意封闭流体线的环量不随时间变化,此即开尔文定理。又由于τ=I,所以流体线对应的流体面上的涡通量也保持不变。
  2. 拉格朗日定理
    由开尔文环量守恒定理可以直接得到一个推论:在彻体力有势条件下的理想无黏正压流动,若在某一时刻流体的运动时无旋的,则在所有的时刻运动都是无旋的。这就是拉格朗日定理,也称为旋涡不生不灭定理。
    由拉格朗日定理可知,如果流体满足理想无黏、正压、彻体力有势三个条件,则旋涡既不能产生,也不会消失。然而,上述三个条件只要有一个得不到满足,旋涡就既能产生也可能消失。
    开尔文定理和朗格朗日定理是判断流动是否有旋的重要定理。
3.6.3 亥姆霍兹旋涡定理

上面证明了在理想、正压和彻体力有势三个条件下,流动无旋则永远无旋,有旋则永远有旋的事实。从开尔环量守恒定理出发,很容易导出亥姆霍兹定理。

  1. 涡面、涡管和涡线的保持性定理(亥姆霍兹第一定理)
    1 . 定理:若流体是理想无黏、正压的,且彻体力有势,则在某一时刻构成涡面、涡管和涡线的流体质点,在运动的全部时间中,仍将构成涡面、涡管或涡线。
  2. 涡管强度保持性定理(亥姆霍兹第二定理)
    1 . 定理:若流体是理想无黏、正压的,且彻体力有势,则涡管的强度在运动过程中恒不变。
    涡管的强度就是通过该涡管的任意截面的涡通量,也等于绕涡管侧面上任一条环绕涡管的封闭曲线的速度环量。在涡管侧面上任取一条包围涡管的封闭流体线L(t),则绕该流体线的环量为此涡管的强度。根据涡管保持定理和流体线保持定理,运动过程中此涡管仍保持为涡线,而该流体线一直保持在涡管的测量上,则涡管的强度仍然等于绕该流体线的环量。又根据开尔文环量守恒定理有:Dτ/Dt=D∮Vdl/Dt=0。绕该流体线的环量不变。所有,运动过程中涡管强度不变。
  3. 旋涡定理的讨论
    涡管强度守恒定理:在同一时刻,沿涡线或涡管,涡管的强度不变。并由此推出涡管不可能在流体中中断,只能伸向无限远、自相连接成涡环或止于边界。这个定理是运动学的,既适用于理想无黏流动,也适用于黏性流体。
    拉格朗日定理(涡旋不生不灭定理)、亥姆霍兹旋涡定理(涡面、涡管和涡线的保留性定理,涡管强度保持性定理)的导出都基于开尔文环量守恒定理,它们的成立条件都是要求流体理想无黏、正压且彻体力有势。
    综合可知,在流体理想无黏、正压、彻体力有势的情况下,旋涡永远是由同样的一些流体质点组成,并且它的强度(涡管的强度)无论对空间和时间来说都是不变的。实际流体的运动中,情况不完全如此:涡强会因为黏性发生变化;会因为气体的变化过程是非正压而出现旋涡。但亥姆霍兹定理在某些情况下可以应用于实际流体的运动。上述旋涡定理就为建立机翼的旋涡系统模型提供了理论依据。
3.7 理想流体的能量方程

针对理想无黏流体导出能量方程,即运动的理想流体满足的能量守恒定理。
采用“系统”观点的热力学第一定律为:系统总能量的变化率,等于单位时间内外界传给系统的热量和外界对系统做的功率:DE系统/Dt=Q·+W·
上式中,DE系统/Dt为系统的总能量(包括内能与动量)随时间的变化率。Q·为单位时间内外界传给系统的热量,不考虑详细的换热过程,规定外界向系统传热时Q·为正值。对于理想流体,不考虑流体自身(流体微团之间)的热传导。W·为外界对系统的做功率,包括彻体力和表面力的做功率,对于理想流体,只有彻体力和压力的做功率。

3.7.1 微分形式的总能方程

单位质量流体的总能量E为单位质量的内能e与动能之和:E=e+V^2/2。取一流体微团为“系统”,其体积为dΩ(t),界面积为dS(t),均随时间变化。
记单位时间外加给单位质量流体的热量为q·,微团单位时间吸收的外加热为(ρdΩ)q·,彻体力对微团的做功率为(ρdΩ)f·V=ρdΩ(fxu+fyv+fzw)。式中,f为作用在单位质量流体上的彻体力。
流体微团的总能方程为:ρD(e+V^2/2)Dt=ρq·+ρf·V-▽·(pV),或展开为:ρD(e+V^2/2)Dt=ρq·+ρ(fxu+fyv+fzw)-[∂(pu)/∂x+∂(pv)/∂y+∂(pw)/∂z]

3.7.2 微分形式能量方程的其他形式
  1. 动能方程
    动能方程可由动量方程导出。将速度V与欧拉运动微分方程进行点乘,得到ρV·DV/Dt=ρV·f-V·▽p,即ρD(V^2/2)/Dt=ρV·f-V·▽p
    上式为动能方程,表明流体动能的变化率等于单位时间内彻体力和压差力对流体做的功。
  2. 内能方程
    首先从物理意义分析导出内能方程。取一流体微团系统,其体积为dΩ(t),内能为eρdΩ。内能的变化率为D(eρdΩ)/Dt=eD(ρdΩ)/Dt+ρdΩDe/Dt=ρDedΩ/Dt
    根据热力学只是,流体微团内能发生变化有两个原因:一个是吸收外加热,微团单位时间吸收的热量为(ρdΩ)q·,吸热则内能增加。另一个是微团体积变化时压力做功,微团膨胀时是对外界做功,内能减小;外界压缩微团则是外界对微团做功,增加其内能。
    体积变化时的压力做功率为-p(▽·V)dΩ,也称为压力做的膨胀功。上式的含义是压强×体积变化=压强×体积应变率×体积。从而得到内能方程为ρDe/Dt=ρq·-p▽·V
    根据总能为内能与动能之和,也可以从总能方程中减去动能方程得到内能方程。流体总能的变化率来源于吸热、彻体力做功、压力做功三项。其中吸热增加流体内能,彻体力做功增加流体动能。压力的做功率分为两部分:-▽·(pV)=-V·▽p-p▽·V。-V·▽p部分就是压差力做功,改变流体的动能,另一部分-p▽·V就是压力的膨胀功,用于改变流体的内能。
  3. 总焓方程
    单位质量气体的焓为h=e+p/ρ,运动气体的总焓为h+V^2/2=e+p/ρ+V^2/2
    总焓方程:ρD(h+V^2/2)Dt=ρq·+ρf·V+∂p/∂t
3.7.3 积分形式的能量方程
  1. 针对控制体的热力学第一定律
    以t瞬时位于控制体内的流体作为“流体系统”。根据热力学第一定律:流体系统的总能量的变化率等于单位时间内外界传给系统的热量Q·,加上外界对系统的做功率。即D[∭ρ(e+V^2/2)dΩ]/Dt=Q·+W·。式中,Q·为单位时间内外界传给系统的热量,W·为外界对系统的做功率。
    在雷诺输运定理中令η=ρ(e+V^2/2),即可将系统总能的变化率表述为控制体内流体总能的当地变化率与通过控制面的总能流出率之和。
    适用于控制体形式的能量方程:∭∂[ρ(e+V^2/2)∂t]δΩ+∯[ρ(e+V^2/2)]V·nδS=Q·+W·。方程右端的Q·为外界向控制体内流体的传热率,W·为外界对控制体内流体的做功率。
  2. 外界对控制体内流体做功率
    先看彻体力做功率。设控制体内单位质量流体受到的彻体力为f,则彻体力所做的功率为Wf·=∭ρf·VδΩ
    作用在控制面的S部分(流体界面)上的表面力一般情况下应包括压力和黏性力,本节研究理想流体,不计流体界面上的黏性力,只有法向压力。S面上的法向压力所做的功率为Wn·=-∯p(ρV·n)δS/ρ
    在控制面S1上物体对流体有作用力,该力对流体所做的功率记为-Ws·,反过来,可以说流体客服物体施加的力对物体的做功率为Ws·
  3. 积分形式的能量方程
    能量方程的一般形式:∭∂[e+V^2/2]δΩ/∂t+∯[(h+V^2/2)](ρV·n)δS=Q·+∭ρf·VδΩ-Ws·
    上式表明:控制体内流体总能的当地变化率+通过控制面的总焓流出率=外界对控制体的传热率+彻体力的功率-控制体内流体(系统)对外做功率。流体对物体的做功率Ws·是有用的输出功率,也称为输出的轴功Ws·,实际应用中常有要求。
    上式针对理想流体导出的积分形式能量方程。对于实际流体,在固体壁面附近的边界层内要考虑黏性力。如果所取控制体的控制面是固体表面和边界层外的流体曲面,上述能量方程仍然适用。壁面处黏性力的做功率,或者说流体克服黏性力对外的做功率,总和包含在轴功Ws·中的。
3.8 流体动力学方程组的封闭性和定解条件

讨论是方程组封闭需要补充的关系式。
流体动力学方程组是偏微分方程组,其具体解还取决于定解条件。

3.8.1 方程组的封闭性

封闭性指方程组具有的方程个数是否等于所出现的未知函数个数的问题。
以微分形式的流体动力学方程组为代表讨论封闭性问题,考察连续方程、黏性流体的运动微分方程、理想流体的总能方程或总焓方程。通常假设彻体力f和外加热q·已知,N-S方程中的黏度μ是温度T,因此方程组中出现的未知函数由ρ、V、p、T、e(或h)。可见方程个数少于未知函数的个数,还需补充热力学参数间的关系式。
经典热力学对静止的气体系统给出了热力学关系式,但流动的气体是连续的非均匀系统,其内部各点的热力学特性是连续变化的。根据实验观察可知,当各种梯度不大时,非均匀的连续系统的诸状态变量之间的局部和瞬时关系,与均匀系统一样。这样就可以直接应用经典热力学关于封闭的均匀系统的概念和结论。热力学参数间的关系还与气体所处的温度压力条件有关。
对于空气等气体,800K以下时可采用量热完全气体假设,有以下关系式:
p=ρRTh=cpTe=cvTcp=γR/γ-1cv=R/γ-1
式中,R为特定气体的气体常数,cp为定压比热容,cv为定容比热容,γ比热容比,800K以下的空气γ=1.4。
特别地,对于不可压流,由于密度ρ为已知的不变常数,所以质量方程和动量方程,就可构成一个关于压力p和速度V的封闭方程组,可由此先解出压力和速度,之后再由能量方程求解内能或温度。由于求解不可压流失,其能量方程可以不与质量和动量方程一起联立求解,所以称为非耦合的;而对于可压缩流动,则必须质量、动量和能量方程联立求解,称为耦合。

3.8.2 定界条件

初始条件和边界条件统称为定解条件,定解条件的规定方法与方程的数学类型有关。由于流体力学控制方程组的非线性,其定解条件提法问题没有完全解决,这里之间要地介绍目前较通用的处理方法。

  1. 初始条件
    对于非定常流动,应规定初始条件。即给出初始时刻t=t0时,诸物理量的空间分布情况为:Q(x,y,z,t0)=Q0(x,y,z)
    式中,Q代表ρ、V、p、e(或T、h),Q0为已知函数。在t=t0,方程组的解应该等于该时刻给定的初始值Q0。
  2. 边界条件
    在运动流动的边界上,方程组的解所应满足的条件称为边界条件。一般有以下几种边界:固体壁面、不同流体分界面、无限远处、管道进出口处等。
    考虑无渗透的固体壁面。黏性流体质点将黏附于固体避免上,即满足无滑移条件:Vf|w=V物。式中,Vf|w是流体在固体壁面处的速度,V物则是固体壁面运动速度。对于静止固体壁面,则Vf|w=0
    理想无黏流体可以沿固体壁面滑移,其相对于固体壁面的切向分速度为未知量,不能由边界条件规定,但其法向分速度与固壁的相同,即Vf,n|w=V物,nVf,n|w=0
    对于黏性流体运动,固壁处还需给出温度边界条件。改定固壁温度时,流体在固壁处的温度与固壁温度相等,即满足温度无跳跃条件:Tf|w=T物
    或者给定流向单位面积壁面的热源率qw,则要求:-k∂Tf/∂n|w=qw。式中,∂Tf/∂n是流体温度沿壁面外法线方向的梯度。
    另外,在无穷远处,要给出自由来流条件,一般给定无穷远处流动的速度V∞、压强p∞和密度ρ∞。管道流动中,给出进口或出口边界调减,具体的边界调减提法和流动还和流动是可压或不可压、亚声速或超声速有关。
3.9 流动相似与相似参数

从流动控制方程求解的角度看,两个流动相同的要求是两者的有量纲的控制方程和定解条件完全相同,因而有量纲解相同。绕真实的全尺寸飞行器的和绕其缩比模型的两流动,虽然有量纲控制方程相同,但由于边界条件中的优良刚物面方程不同,因此两流动的有量纲解不同。不过可以对控制方程和定解条件进行无量纲化,转而寻求流动的无量纲解。
首先对流动控制方程(以连续方程和N-S方程为代表)和定解条件进行无量纲化,之后考察流动相似的条件和相似参数。

3.9.1 流动控制方程和定解条件地无量纲化

通过对流动物理情况进行分析和了解,选定一组特征物理量(或称参考量),然后用这些量去除方程和定解条件中出现的响应变量,得到无量纲变量;再将原来的有量纲方程和边界条件转由这些无量纲变量表述,就可得到无量纲的方程和定解条件。

  1. 参考量和无量纲变量
    流动中各类物理量的参考量的通常取法及由此得到的无量纲变量(用上标“*”标记),列举如下:
    1 . 时间:参考量取为流场当地状态发生变化需要的典型时间T,在有周期现象的流动中T即周期,无量纲量为t*=t/T。
    2 . 长度:参考量取为物体的特征长度L,无量纲量为x/y/z*=x/y/z/L。
    3 . 速度:参考量取为自由流速度V∞,无量纲量为u/v/w/V*=u,v,w,V/V∞。
    4 . 密度:参考量取为自由流速度ρ∞,无量纲量为ρ=ρ/ρ∞。
    5 . 压力:参考量一般取为ρ∞V∞2,无量纲量为p*=p/ρ∞V∞2
    6 . 彻体力:参考量取为重力加速度g,无量纲量为fx,y,z*=fx,y,z/g
    7 . 黏度:参考量取为自由流黏度μ∞,无量纲量为μ*=μ/μ∞
    8 . 算符也可无量纲化,例如∂/∂x*=L∂/∂x,▽*=L▽,▽*2=L22
  2. 方程的无量纲化
    将连续方程的各变量均用上面定义的无量纲量与参考量的乘积代替,方程两边同除以组合式,就可得到无量纲的连续方程:L/V∞T·∂ρ*/∂t*+∂(ρ*u*)/∂x*+∂(ρ*v*)/∂y*+∂(ρ*w*)/∂z*=0。式中,参考量的组合式L/(V∞T)是一个无量纲参数。
  3. 边界条件的无量纲化
    以无渗透固壁上的黏性流体速度边界条件和无限远处(即自由流)边界条件为代表进行讨论。固体壁面的方程为G(x,y,z)=0。
    将坐标用无量纲量与参考长度的乘积表示,则为G(Lx*,Ly*,Lz*)=0。可以改写为G*(x*,y*,z*)=0。
    固壁上的速度无滑移条件式写成无量纲形式为Vf*|G*(x*,y*,z*)=0处=V物|G(x,y,z)=0处/V∞。
    无穷远处的速度、密度和压力,即V/ρ/p∞=V/ρ/p∞。
    则无穷远处的无量纲形式速度边界条件为V*|∞=V∞/V∞
  4. 无量纲方程和定解条件小结
    上面得到了无量纲方程的连续方程、N-S方程、无量纲的物面方程及边界条件式。另外,无量纲化的初始条件就是,在初始时刻t*=t0*(=t0/T),无量纲方程组的解应等于给定的函数值除以对应的参考量,即Q*(x*,y*,z*,t0*)=Q0(x,y,z)/Qref。式中,Qref为对应变量Q的参考量。
    这些无量纲量具有一定的物理意义,也正是它们决定了两个流动的相似。
3.9.2 相似率和相似参数
  1. 流动相似的条件
    两个流动相似的充分和必要条件是:
    1 . 流体边界几何相似;
    2 . 无量纲控制方程组完全相同;
    3 . 无量纲定解条件完全相同。
    两流动的流动边界结合相似,即要求两流动绕流物体的无量纲物面方程相同:G1*(x*,y*,z*)=G2(x*,y*,z*)。
    要两流动相似,还要求两者的无量纲数必须一一相等。而两流动的各有量纲参考量不一定相等。
    这里只讨论了无量纲的连续方程、N-S方程和部分定解条件,无量纲的能量方程和其他定解条件还会引入其他的无量纲数。
  2. 相似参数及其物理内涵
    无量纲控制方程和定解条件中出现的无量纲数具有重要的意义
    如果两流动中它们各自对应相等,同时两流动又满足流体边界几何相似,则两流动的无量纲方程和定解条件相同,从而无量纲解相同,流动相似。所以这些无量纲数就称为相似参数,它们是判断两流动是否相似的准则,也称为相似准则。
    相似参数是在进行方程和定解条件无量纲化时选取的一些参考量的组合。相似参数具有明确的物理内涵,下面总结并给出名称:
    1 . L/(V∞T)
    这是一个与流场的非定常性有关的相似参数,称为斯特劳哈尔数,用Sr表示:Sr=L/V∞T。L/V∞表示特征滞留时间。
    从动量方程看,Sr代表当地加速度对应惯性力和迁移加速度对应惯性力典型值之比。
    若Sr远小于1,则表明流场非定常性影响很小。
    2 . gL/V∞^2
    它代表彻体力和迁移加速度对应惯性力典型值之比,其倒数的平方根称为佛劳德数,用Fr表示:Fr=V∞/√gL。如果Fr远大于1,说明重力项的影响很小,可以忽略。
    3 . μ∞/(ρ∞V∞L)
    它代表黏性力和迁移加速度对应惯性力典型值之比,N-S方程中该项可以忽略,也就是说可以采用理想流体的欧拉方程。
    4 . p∞/(ρ∞V∞^2)
    该无量纲数出现在无量纲的自由流压力条件中,它可反映自由流静压与动压之比,也称为欧拉数Eu:Eu=p∞/ρ∞V∞^2。
    利用完全气体状态方程及声速公式,可得Eu=1/γMa∞^2。
    马赫数是流体宏观运动速度与声速之比,马赫数的平方可反映气流的宏观动能与分子热运动内能的比较。可见欧拉数也可反映气流内能与宏观动能之比。
  3. 相似律小结
    将上述相似参数定义代入前面得到的无量纲连续方程和N-S方程,得到一系列方程。
    另外,无量纲的物面方程为G*(x*,y*,z*)=0。
    无量纲的自由流条件为u*|∞=cosα,v*|∞=sinα,p*|∞=p∞/ρ∞V∞^2=1/γMa∞^2
    根据这些含相似参数的无量纲方程和定解条件,可以总结出相似律:如果量流动体的流体边界几何相似(即无量纲物面方程相同),相似参数一一对应相等。
    则两流动的无量纲解相同,即Q1*(x*,y*,z*,t*)=Q2*(x*,y*,z*,t*)。
    式中,Q代表ρ、V、p、e(或T、h)等物理量的流场分布,也可以代表飞行器的整体气动力特性等。
    应用相似律,可将试验得到的结果应用于真实流场。若由试验得到了模型流场(记为流场1)的有量纲结果Q1(x,y,z,t),真实飞行器的流场(记为流场2)无量纲解和它相同,Q2(x,y,z,t)=Qref,2·Q2*(x*,y*,z*,t*)。
  4. 完全相似和部分相似
    实际上根据问题涉及的物理内容的不同,还可以得出另外的相似参数。为了保证两流动严格相似,必须使它们所有的相似参数都对应相等,在实际上几乎不可能,因为有些相似参数会互相矛盾,从而只能采用全尺寸模型进行试验研究,即L1=L2。
    实际上,各个相似准则的重要程度不是在任何条件下都完全一样,可以根据所研究的具体情况值保证某些起主要作用的相似参数,也就是保证部分相似而非完全相似。
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
R语言实战笔记第九章介绍了方差分析的内容。方差分析是一种用于比较两个或多个组之间差异的统计方法。在R语言中,可以使用lm函数进行方差分析的回归拟合。lm函数的基本用法是: myfit <- lm(I(Y^(a))~x I(x^2) I(log(x)) var ... [-1],data=dataframe 其中,Y代表因变量,x代表自变量,a代表指数,var代表其他可能对模型有影响的变量。lm函数可以拟合回归模型并提供相关分析结果。 在方差分析中,还需要进行数据诊断,以确保模型的可靠性。其中几个重要的诊断包括异常观测值、离群点和高杠杆值点。异常观测值对于回归分析来说非常重要,可以通过Q-Q图和outlierTest函数来检测。离群点在Q-Q图中表示落在置信区间之外的点,需要删除后重新拟合并再次进行显著性检验。高杠杆值点是指在自变量因子空间中的离群点,可以通过帽子统计量来识别。一般来说,帽子统计量高于均值的2到3倍即可标记为高杠杆值点。 此外,方差分析还需要关注正态性。可以使用car包的qqplot函数绘制Q-Q图,并通过线的位置来判断数据是否服从正态分布。落在置信区间内为优,落在置信区间之外为异常点,需要进行处理。还可以通过绘制学生化残差的直方图和密度图来评估正态性。 综上所述,R语言实战第九章介绍了方差分析及其相关的数据诊断方法,包括异常观测值、离群点、高杠杆值点和正态性检验。这些方法可以用于分析数据的可靠性和模型的适应性。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [R语言实战笔记--第八章 OLS回归分析](https://blog.csdn.net/gdyflxw/article/details/53870535)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

【执珪】瑕瑜·夕环玦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值