第三章 冲压发动机热力计算
实际冲压发动机燃烧室和喷管各个截面上定压比热、定容比热、气体常数等燃气热力参数并不相等。冲压发动机热力计算的任务是利用化学热力学只是研究发动机工作过程中燃烧室和喷管中燃气的燃烧、流动,确定燃烧室出口截面、喷管喉部和喷管出口截面上燃气温度、压强、速度、燃气组成、燃气热力参数(包括气体常数、比热容和比热比等)及发动机理论性能(包括通过喷管喉部单位面积上质量流量、特征速度、推力系数和发动机比冲等)为发动机燃烧、流动和传热计算、发动机设计和新歌能分析等提供燃气热力参数,并为发动机理论性能计算、推进剂组员选择好配方研究等提供依据,为发动机性能评估提供比较基准。
3.1 热力计算基本假设
由于过程复杂,热力计算只能考虑主要因素,求得发动机可能达到的理论上最大性能,为发动机性能评估提供基准。
热力计算基本假设包括以下六点:
- 燃烧产物处于两相平衡
定义:当燃烧产物中含有气相和固态或液态颗粒(称为凝相)时,燃烧产物为两相混合物。两相平衡含义:一是两相混合物的凝相和气相处于相平衡,凝相物质的气相分压为该物质所处温度下饱和蒸气压,凝相物质标准摩尔熵和标准化学势仅仅是温度的函数。二是认为凝相和气相的温度和速度处处相等,两相间能量和动量交换速率为无限大。该假设表明,热力计算针对两相平衡流计算。由于燃烧室中燃气流动速度较低,燃气各组分接近两相平衡,假设所引起的偏差很小。但喷管流动中两相不平衡度较大,该假设引起的偏差较大,预估发动机实际比冲时,应对两相不平衡引起的偏差进行修正。 - 燃烧产物处于化学平衡
一定温度、压强下,解离和复合速度相等。 - 气相产物为完全气体,遵循完全气体状态方程
- 燃烧产物与燃烧室壁及其他部件之间没有能量交换,燃烧产物在燃烧室中流速为零
- 在喷管中燃烧产物流动是定常一维等熵流
等熵流假设意味着喷管中流动的燃气是无黏完全气体,并处于绝热和化学平衡(或化学冻结)状态。这一假设对纯气相燃气流动,引起的偏差较小。但对于两相喷管流动,它是非等熵流动,将引起较大偏差。 - 不考虑凝相布朗运动产生的压强,不考虑凝相所占体积
从以上假设可以看出,热力计算主要忽略了非等熵因素和喷管型面等影响,计算得到的发动机平衡流比冲是理论上最高可能达到的水平,称其为理论比冲。理论比冲与实际比冲之差称为发动机比冲损失。由上述假设可知,主要性能损失是燃烧不完全所造成的化学能损失、两相流损失、喷管型面引起的扩散损失、向壁面传热和与壁面摩擦引起的边界层损失以及化学反应有限速率引起的化学动力学损失等。
满足上述假设喷管流动包括平衡流和冻结流。
平衡流为两相平衡和化学平衡的流动;冻结流为喷管中流动的燃气组分物质的量保持为燃烧室的燃气组分物质的量。
冻结流因为计算没有考虑燃气在喷管中复合反应放出的能量,计算所得比冲低于平衡流。对于纯气相燃气,燃气在喷管入口处接近平衡流,在喷管出口处接近冻结流。
3.2 热力计算基本方程
包括质量守恒方程、化学平衡方程、能量守恒方程、等熵方程和完全气体状态方程。
3.2.1 单位质量推进剂化学式和质量守恒方程
3.2.1.1 单位质量推进剂化学式
推进剂均由化学物质(简称组元或组分组成)。
组元一般分子式(或化学式)可写为CγcHγHOγONγN,式中,下标分别代表组元分子式(或化学式)中元素等摩尔原子数。
某组元相对分子质量为M=γcmc+γHmH+γOmO+···=∑(k=1→L)γkmk
式中,mc、mH、mO分别为原子的相对原子质量,γk未组元分子式中第k种元素摩尔原子数;mk为第k种原子相对原子质量;L为组成组元的元素种类数。
热力计算取1kg推进剂为研究对象。把1kg推进剂用一个假想化学式(单位质量推进剂化学式/推进剂化学式)表示,形式为CNCHNHONONNNClNClALNAl
设推进剂由q种组元构成,各组元质量分数为g1、g2、···gq,根据组成推进剂各组元2质量之和等于推进剂质量,得g1Cbc1HbH1ObO1+···+gqCbcqHbHqObOq=CNCHNHONO···
满足一般形式公式Nk=∑(i=1-q)gibk=∑(i=1-q)gi·1000/Mi·γki,k=1,2,···,L
式中,下标k代表组成推进剂某元素,例如C、H、O等。
这样,根据各组元分子式、相对分子质量和质量分数就可以得到单位质量推进剂化学式。
3.2.1.2 质量守恒方程
推进剂燃烧中,不论过程多么复杂,燃烧产物质量一定等于参与燃烧的推进剂质量。这就是质量守恒方程,也称物质平衡方程。也即燃烧前后各元素原子总摩尔数不变。
若推进剂由L种元素组成,可写出L个原子守恒方程。设燃烧产物由N种组分组成,可写出L个原子首胜方程。其原子守恒方程为Nk=∑(i=i-N)akini,i=1,2,···,L
式中,aki为1mol第i种燃烧产物组分中第k中元素的摩尔原子数;ni为1kg燃烧产物中第i种产物组分物质的量。原子守恒方程中,Nk可根据推进剂计算,是已知量。当燃烧产物组成已知是,aki也是已知量。因此,原子守恒方程是一个线性方程组,可用哦矩阵表示为[N1;N2···NL]=CM×[n1;n2···,nN]
式中,矩阵CM为由aki构成的L×N阶系数矩阵。
3.2.2 化学反应式和化学反应平衡方程
3.2.2.1 独立、完整的化学反应式
通常选取一组燃烧产物作为基础产物,所有其他组分都由基础产物组成。基础产物简称“基”,从数学上讲,“基”的选择满足下面两条。
- “基”必须线性无关,即任何一个基不能是其他基的线性组合。基础产物不能由相同元素构成。
- 除了基以外任一产物必须是即的线性组合。基必须包含推进剂中全部元素,且基的个数恰好等于组成推进剂的元素数。
按照以上原则,基础产物的选择方案很多。选择的基础产物不同,化学反应式不同,化学平衡方程也不同。
3.2.2.2 化学反应平衡方程
- 以原子态气体为基的化学反应式和化学反应平衡方程
设推进剂由L种元素组成,有N种燃烧产物,则以原子态气体为基一般化学反应式为Bi↔∑(k=1-L)aikAk
式中,BI为第i种燃烧产物(包括气态原子组分);Ak为第k种元素;aik为1molBi组分中第k种元素的摩尔原子数。化学反应式可写为矩阵形式。
[B1;B2···Bn]↔AA×[A1;A2···AL]
式中,左端为Bi组成的N×1阶矩阵,右端AA为aik组成N×L阶矩阵,第二项为Ai组成的L×1阶矩阵。
CM矩阵是AA矩阵的转置矩阵,即CM=AAT。
3.2.3 燃烧产物平衡组分逐次渐进分析法
逐次近似计算法在给定温度、压强下,由原子守恒方程和平衡常数求解燃烧产物平衡组分物质的量。计算方法步骤如下:
- 选取燃烧产物组分。
- 由原子守恒方程列出计算独立组分物质量的方程。
- 列出独立组分为基的化学反应式和化学平衡方程。
- 按逐