空气动力学(笔记自留)-第七章(文末附彩蛋)

第七章 翼型与细长旋成体起动特性的近似计算方法

本章介绍飞行器典型部件模型的气动特性近似计算方法。

7.1 翼型的几何描述与空气动力系数

翼型时飞机机翼和尾翼成型的重要组成部分,直接影响飞机的气动性能和飞行品质。

7.1.1 翼型的几何参数

对于不同的飞行速度,机翼的翼型形状是不同的。
翼型上下表面由一定形状的曲线连成。翼型的最前端点称为前缘点,最后端点称为后缘点。翼型前后缘点的连线称为翼型的几何弦。前后缘点之间的距离称为翼型的弦长,用c表示。
翼型的几何特性以弦线为基准线(x轴)来描述。上下翼面型线的方程可分别写为:上翼面:yu=yu(x),下翼面:yl=yl(x)
上下翼面y坐标之差的一半定义为翼型的厚度函数:yt(x)=1/2·(yu-yl)
yu-yl的最大值称为翼型厚度t,通常以弦长为基准度量厚度,即相对厚度:t-=t/c=2ytmax/c
上下翼面y向高度中点的连线称为翼型中弧线。若中弧线是一条直线(与弦线合一),这个翼型是对称翼型。若中弧线是曲线,就说明翼型有万都。翼型的弯度函数,即中弧线y坐标,为上下翼面y坐标之和的一般:yf(x)=1/2·(yu+yl)
中弧线上最高点的y坐标称为翼型的弯度f,也通常用其与弦长之比表示,即相对弯度:f-=f/c=yfmax/c

7.1.2 NACA系列翼型

常被用作理论及试验分析的参照标准。

7.1.3 翼型的空气动力系数
  1. 翼型所受的力和力矩
    翼型绕流视为平面流动 ,翼型上的气动力是无限翼展机翼在展向取单位长度的部分所受的气动力。飞行器在翼型表面上每点都作用有垂直于翼面的压力p和与翼面相切的摩擦切应力τ(垂直于翼面的黏性正应力应略去)。作用于翼型上的分布力可合成为作用于某参考点的一个合力R和绕该参考点的合力矩M。
    设V∞为飞行器远前方未经扰动的气流速度,c为翼型弦长,α为迎角,即来流V∞与翼弦线之间的夹角,对弦线而言,来流上偏为正,下偏为负。
    作用于翼型上的空气动力合力在垂直于弦线方向的分量称为法向力,用N表示;在平行于弦线方向的分量称为轴向力,用A表示。合力还可以分解为垂直于来流V∞方向的分量即平行于V∞的分量,分别称为升力和阻力,并分别用L和D表示,满足下列公式:L=Ncosα-AsinαD=Nsinα+Acosα
    作用于翼型上的合力矩是绕z轴(垂直于翼型所在的xy平面)的,称为俯仰力矩,规定使翼型前缘抬起的力矩为正。翼型前缘是一个常用参考点,此时俯仰力矩用MLE表示。
  2. 压力中心
    若绕参考点的力矩为零,则该点称为压力中心,也即翼型所受空气动力合力的作用点。xcp为压力中心距前缘的距离。当参考点取在翼型前缘时,翼型所受的空气动力和力矩可以表示为作用于该点的力N,A和力矩MLE。
    压力中心位置xcp可计算如下。由MLE=-xcpN得xcp=-MLE/N。
    当迎角α很小时,sinα≈0,cosα≈1,则有xcp=-MLE/L。
  3. 空气动力系数
    工程中常用无量纲的空气动力系数,翼型的空气动力系数定义如下:
    1 . 升力系数:CL=L/q∞c=L/1/2·ρ∞V∞^2c
    式中,ρ∞、V∞分别为飞行器远前方未经扰动的自由流密度和速度;q∞=ρ∞V∞^2/2称为动压,是单位体积的自由来流动能;c为翼型弦长。
    2 . 阻力系数:CD=D/1/2·ρ∞V∞^2c
    3 . 前缘俯仰力矩系数:CM,LE=MLE/1/2·ρ∞V∞^2c^2
    对其他参考点的俯仰力矩系数定义类似。
    试验表明,对于给定集合形状的翼型,气动力和力矩是自由流速度、密度、黏度、翼型弦长、迎角的函数。根据量纲分析,可得气动力系数为雷诺数Re、马赫数Ma和迎角α的函数 ,CL=fL(Re,Ma,α),CD=fD(Re,Ma,α),CM=fM(Re,Ma,α)
    对于低速翼型绕流,空气的压缩性可忽略不计,空气动力系数实际上是来流迎角α和雷诺数Re的函数。对升力问题又可略去黏性的影响时,升力系数将只是迎角α的函数。对于高速流动压缩性的影响必须计入,因此马赫数Ma也称为主要的影响变量。上式中的函数具体形式可通过试验或理论分析进一步给出。
7.2 低速翼型的薄翼理论与气动特性

翼型的升力和绕流环量之间的关系满足儒科夫斯基定理:F=ρV∞×τ
绕翼型的环量取决于翼型的几何形状和自由流速度,根据将翼型变换为圆的解析状态确定。一般情况下,找到解析函数比较困难。
本节介绍另一种计算低速翼型气动特性的方法,它针对薄翼型,即厚度和弯度都很小的翼型。当理想不可压直匀流以小迎角绕流这样的翼型时,整个流场和均匀流畅美欧很大差别可以将薄翼型的存在看成对直匀流场的小扰动,绕薄翼型的流场是在原均匀流场上叠加了一个小扰动的流场。低速翼型绕流的速度优势满足拉普拉斯方程,线性可叠加;而小扰动下翼面边界条件也可以线性化因而也具有叠加性,这时翼型的弯度、厚度、迎角三者的影响可以分开处理,然后叠加。这种方法称为“薄翼理论”。相应,用保角变换法计算翼型的气动特性时是把翼型的厚度和弯度放在一起处理的,对翼型的厚度没有限制,称为“厚翼理论”。

7.2.1 薄翼型绕流的扰动速度势及其分解
  1. 扰动速度势及其方程
    将坐标原点置于翼型的前缘点,x轴置于翼型的弦线上,这样的坐标系称为体轴系。
    设翼型绕流场的速度势函数为Φ,可将其分解为Φ=Φ∞+φ
    上式中,Φ∞为速度为V∞、与弦线成α角的直匀流的速度势函数:Φ∞=(V∞cosα)x+(V∞sinα)y
    φ为翼型绕流场速度势函数Φ与直匀流速度势函数Φ∞之差,称为翼型产生的(对直匀流的)扰动速度势。Φ则称为全速度势。
    全速度势满足拉普拉斯方程:∂^2Φ/∂x^2+∂^2Φ/∂y^2=0,即∂^2(Φ∞+φ)/∂x^2+∂^2(Φ∞+φ)/∂y^2=0
    而直匀流的速度势函数Φ∞也满足拉普拉斯方程,由此可推出:∂^2φ/∂x^2+∂^2φ/∂y^2=0
    即扰动速度势亦满足拉普拉斯方程,因而扰动速度势也具有可叠加性。
    如果φf,φt,φα分别为无弯度厚板、有厚度对称翼型和有迎角的平板产生的小扰动速度势,均满足拉普拉斯方程。显然,它们的和也满足拉普拉斯方程。
  2. 翼面边界条件的线性化近似
    薄翼型绕流的速度为:u=∂(Φ∞+φ)/∂x=V∞cosα+∂φ/∂xv=∂(Φ∞+φ)/∂y=V∞sinα+∂φ/∂y。记∂φ/∂x=u',∂φ/∂y=v'为扰动速度。则在小迎角下,速度为u≈V∞+u'v≈V∞α+v'
    理想无黏假设下,翼面的边界条件为翼面上流体速度与翼面相切且,即dyw/dx=vw/uw=V∞α+vw'/V∞+uw'。式中,下标“w”代表壁面。
    上式整理为:vw'=V∞dyw/dx+uw'dyw/dx-V∞α
    对于薄翼型,翼型的厚度和弯度都很小,上式只保留一阶小量后成为vw'=V∞dyw/dx-V∞α
    根据各方程及函数可得yw|ul=yf±yt
    对于翼面边界条件可进一步写为vw'|lu=V∞dyf/dx±V∞dyt/dx-V∞α
    也可以采用速度势φ的偏导数表达为:∂φ/∂y|yl-yu=V∞dyf/dx±V∞dyt/dx-V∞α
  3. 薄翼型绕流的分解
    无厚度弯板yf(x),有厚度对称翼型±yt(x)和迎角为α的平板产生的小扰动速度势φf,φt,φα在各自翼面的边界条件分别为∂φf/∂y|yf=V∞dyf/dx,∂φt/∂y|yt=±V∞dyt/dx,∂φα/∂y|0=-V∞α
    在yf,yt,α均为小量的情况下,φf,φt,φα之和在yu和yl处满足[∂(φf+φt+φα)/∂y](yl-yu)=V∞dyf/dx±V∞dyt/dx-V∞α
    对比上式可知,在薄翼型物面上,(φf+φt+φα)和具有相同弯度、厚度和迎角的薄翼型的扰动速度势φ满足相同的条件,也就是说它满足薄翼型的物面边界条件。而已知(φf+φt+φα)满足拉普拉斯方程,因此可知它就是薄翼型的扰动速度势,即φ=φf+φt+φα
    这样,就将薄翼型的扰动速度势分解成了无厚度弯板、有厚度对称翼型和有迎角的平板三个流动的扰动速度势的叠加。相应地,其扰动速度也分解成了三个流动扰动速度的叠加。
  4. 压强系数Cp的线性化近似及分解
    对于理想不可压无旋流动,根据伯努利方程,压强系数为Cp=1-(V/V∞)^2
    将薄翼绕流的速度式代入,得Cp=1-[(V∞cosα+u')^2+(V∞sinα+v')^2]/V∞^2
    在弯度、厚度、迎角均为小量的假设下,上式若只保留一阶小量,则为Cp=-2u'/V∞
    整理得Cp=Cpf+Cpt+Cpα
    特别地,在物面上有Cp,w=Cpf,w+Cpt,w+Cpα,w
    可见,在小扰动条件下,翼面压强系数也可近似分解为弯度、厚度、迎角三部分贡献的线性和。
  5. 小结
    综上,根据扰动速度势的方程的线性可叠加性质、翼面上y方向扰动速度的线性可叠加性质和翼面压强系数的线性可叠加性质,可将薄翼小迎角绕流问题分解为三个简单势流的叠加,即
    薄翼型绕流=弯度问题(中弧线yf弯板的零迎角绕流)+厚度问题(厚度分布为yt的对称翼型零迎角绕流)+迎角问题(迎角不为零的平板绕流)
    也就是说,对小迎角的薄翼型不可压绕流,其扰动速度势、物面边界条件、压强系数均可线性叠加,作用在薄翼型上的升力、力矩可以视为弯度、厚度、迎角的作用之和。其中,厚度问题因翼型对称,翼型压强分布上下对称,不产生升力和力矩。弯度和迎角问题对应的流动上下不对称,上下翼面有压差,所以产生升力和力矩。可将弯度和迎角作用合起来处理,称为迎角-弯度问题。因此对于小迎角的薄翼型绕流,求其升力和力矩特性时,可将翼型用一个有迎角无厚度的中弧线弯板代表,通过求解这个弯板绕流问题来计算升力和力矩。
7.2.2 迎角-完蛋问题及其求解

儒科夫斯基定理指出作用在翼面上的升力与翼型的绕流环量成正比,反过来也说明,能够产生升力的翼型绕流,一定存在绕翼型的环量。环量是可以通过点涡来体现的,因此若采用基本解叠加法求解又省力的翼型绕流问题,就可以通过若干点涡流场的线性叠加模拟翼型绕流场。

  1. 求解方法
    薄翼理论中,对能产生升力的弯板(有迎角或无迎角)或有迎角的平板,用连续分布在中弧线上的我代替其作用。记γ=γ(s)为当地的单位长度上的涡强,ds段上的环量为γ(s)ds。当中弧线的弯度很小时,在中弧线上分别涡可以认为和在弦线上分布涡的作用使一样的。这样γ=γ(ξ),而整个翼型的总环量为τ=∫(0-c)(γ(ξ)dξ)
    式中,c为翼型弦长。确定环量就可计算升力,可见关键的问题是确定涡强γ(ξ)分布。
    点涡的速度势函数是满足拉普拉斯方程,上述分布涡γ(ξ)势函数的积分也满足拉普拉斯方程。γ(ξ)的具体数值通过满足翼型绕流的两个边界条件来确定:翼面上流速与翼面相切+库塔-儒科夫斯基后缘条件,即翼型上下翼面的流动在尖后缘处平滑汇合。
    翼面上流速与翼面相切的条件可表述为vw'=V∞(dyf/dx-α)
    其中,vw'=(∂φf/∂y)w+(∂φα/∂y)w是有迎角的中弧线弯板产生的扰动速度在中弧面上的值。翼面弯度很小时,中弧面上y方向的扰动速度可近似用弦线上的值取代。
    上下翼面气流在尖后缘处平滑汇合要求上下翼面速度相等。绕任一微元涡段的环量和该微元涡段对应位置上下翼面速度的关系为:γ(ξ)dξ=(V上-V下)dξ,因此库塔-儒科夫斯基后缘条件要求后缘处涡强为零。
    综上,在一级近似条件下,求解薄翼型的升力和力矩的问题,可归纳为满足下列条件下,求涡强沿弦线的分布。
    1 . 无穷远边界条件:u∞'=0,v∞'=0
    2 . 翼面边界条件:v'(x,0)=V∞(dyf/dx-α)
    3 . 库塔-儒科夫斯基后缘条件:γ(c)=0
  2. 确定涡强γ(ξ)分布的积分方程
    ∫(0-c)[γ(ξ)dξ/2π(ξ-x)]=V∞(dyf/dx-α)
    此即关于涡强γ(ξ)的积分方程。
  3. 确定涡强γ(ξ)分布的三角级数求解
    积分方程可采用三角级数求解。首先做变量替换:ξ=c/2·(1-cosθ)
    相应地,x变换为x=c/2·(1-cosθ)
    于是γ(ξ)的方程转换为γ(θ)的方程:-∫(0-π)[γ(θ)sinθdθ/2π(cosθ-cosΘ)]=V∞(dyf/dx-α)
    设γ(θ)可表示为一傅氏级数:γ(θ)=2V∞(A0cotθ/2+∑Ansinnθ)
    整理得给定翼型的涡强分布γ(θ),也即γ(ξ):
    A0=α-1/π·∫(0-π)dyf/dx·dΘ
    An=2/π∫(0-π)dyf/dx·cosnΘdΘ
7.2.3 薄翼型的升力和力矩

给定一个薄翼的中弧线方程:yf=yf(x),由上式可求得涡强分布γ(θ),并进一步计算翼型的升力和力矩特性。

  1. 根据环量求升力
    绕翼型的总环量为τ=πV∞c(A0+A1/2)
    翼型的升力L为L=πρV∞^2c(A0+A1/2)
    翼型的升力系数CL为CL=2π(A0+A1/2)=2π[α+1/π·∫(0-π)dyf/dx·(cosΘ-1)dΘ]
    可见翼型升力线的斜率为dCL/dα=2π
    上式说明,薄翼的升力线斜率与翼型的形状无关。
    通常将翼型的升力系数写为以下形式:CL=2π(α-α0)
    式中,α0称为翼型的零升迎角,由翼型的中弧线形状决定:α0=-1/π·∫(0-π)dyf/dx·(cosΘ-1)dΘ
    可见对称翼型的α0=0,对正弯度翼型,α0<0。
  2. 根据涡强分布求力矩
    对前缘的俯仰力矩(抬头为正)为MLE=-π/4·ρV∞^2c^2(A0+A1-A2/2)
    俯仰力矩系数为CM,LE=-π/2·(A0+A1-A2/2)
    应用升力系数式,可将俯仰力矩系数进一步整理为CM,LE=-CL/4+π/4·(A2-A1)
    CM,LE中π/4·(A2-A1)部分是只取决于翼型中弧线形状的常数,不随迎角变化。当升力为零时仍有此力矩,可以称为剩余力矩或零升力矩。零升力矩系数CM,L=0为C(M,L=0)=1/2·∫(0-π)dyf/dx·(cos2Θ-cosΘ)dΘ
    则对前缘的俯仰力矩系数为C(M,LE)=-CL/4+CM,L=0,上式将力矩表示为与迎角(或升力)有关或无关的两部分之和。
    一般来说,力矩是迎角(或升力)的函数。但在翼型上有一点,以它为参考点的俯仰力矩与迎角α无关,该点定义为翼型的气动中心或交点。对翼型的1/4弦长点取矩,得到力矩系数CM,c/4为CM,c/4=C(M,LE)+CL/4=C(M,L=0)
    可见对1/4弦长点的力矩就是零升力矩,与迎角无关。也就是说,薄翼理论结果表明翼型的气动中心就在1/4弦长点。
7.2.4 实用低速翼型的气动力特性

薄翼理论忽略了气体黏性,并在翼型很薄、弯度和迎角都很小的情况下,将翼型对流场的扰动视为小扰动的一种简化理论。薄翼理论无法给出翼型的阻力特性,关于升力系数、升力线斜率和力矩系数的结果用于实际的低速翼型时需要做一定修正。

  1. 升力特性
    翼型的升力特性通常指升力系数与迎角的关系曲线。
    在小迎角下升力线斜率dCL/dα近似为常数,升力系数与迎角呈线性关系:CL=dCL/dα(α-α0)
    升力系数达到最大值后,迎角继续增大引起升力系数下降,这一现象称为翼型的失速。CLmax对应的迎角称为失速迎角。因此,确定升力特性曲线的三个参数是升力线斜率、零升迎角和最大升力系数(失速迎角)。
    升力线斜率与Re数关系不大,主要与翼型的形状有关。对翼型的理论值为2π,厚度的理论值>2π(随厚度和后缘角的增加而增大)。由于未计入黏性的影响,试验值小于理论值。对于平板,有dCL/dα=0.9×2π
    NACA翼型的升力线斜率与理论值较接近。经常用到的一个经验公式为dCL/dα=0.9×2π(1+0.8t-)
    零升迎角主要是与翼型弯度有关,NACA四位数字翼型的零升迎角为α0=-f-×100(°)
    最大升力系数主要是与边界层分离有关,取决于翼型的集合参数、Re数、表面光洁度。常用低速翼型的最大升力系数为1.3~1.7。
  2. 翼型的纵向力矩特性、压力中心与气动中心
    翼型纵向力矩特性可用力矩系数随迎角或随升力系数变化的曲线表示。例如,CM,LE-CL曲线,在小迎角下CM,LE-CL曲线的斜率也近似为常数,前缘力矩系数与升力系数呈线性关系:CM,LE=CM,L=0+dCM,LE/dCL·CL
    正弯度翼型的CM,L=0<0,可见迎角或升力越小,压力中心位置越靠后。
    翼型的气动中心定义为以它为参考点的俯仰力矩与迎角α无关的点,也称为焦点。将以弦长无量纲化的气动中心的位置记为xac-,则对气动中心的力矩系数CM,ac与前缘力矩系数CM,LE的关系为CM,ac=CM,LE+xac-·CL
    进一步得CM,ac=CM,L=0+(xac-+dCM,LE/dCL)·CL
    CM,ac与迎角无关,所以也与升力系数无关,恒等于零升力矩系数CM,L=0,即CM,ac=CM,L=0
    从而得到无量纲的气动中心位置为xac-=-dCM,le/dCL
    根据对气动中心的力矩与迎角和升力无关,可知气动中心是升力增量(因α改变引起的升力的变化量)的作用点。对比可知,正弯度翼型的压力中心位于气动中心之后。
  3. 翼型的阻力特性与极曲线
    翼型阻力包括摩擦阻力和压差阻力,二者均起因于空气的黏性。摩擦阻力直接来源于作用在翼面上的摩擦切应力,压差阻力则是承受逆压梯度的边界层引起了流动分离从而改变翼面压强分布造成的。
    低速翼型的摩擦阻力几乎不随迎角和升力变化,失速前的压差阻力近似与升力系数的平方成正比。因此阻力系数可表示为CD=CD,0+kCL^2
    式中,CD,0称为零升阻力系数,也是摩擦阻力系数。KCL^2则是压差阻力系数。
    翼型的阻力特性可用CD-α表示,但在飞机设计上常用CL-CD表示翼型的升阻特性,称为极曲线。另外,翼型的升阻比定义为K=CL/CD,表征了翼型的气动效率,是一个重要的气动特性参数。性能好的翼型,最大升阻比可达到50以上。
  4. 若干NACA翼型的气动特性数据与曲线
7.3 无黏定常等熵可压缩流动的速度势方程

无旋流动存在速度势,对于不可压无旋流动,速度势函数满足拉普拉斯方程。求解一个具体的无旋流动问题,在数学上可以归结为在满足给定边界条件下求解拉普拉斯方程。

7.3.1 全速度势方程

二维定常流动的连续方程为∂(ρu)/∂x+∂(ρv)/∂y=0ρ∂u/∂x+ρ∂v/∂y+u∂ρ/∂x+v∂ρ/∂y=0
等熵过程中有dp=a^2dρ
整理后的无黏、定常、等熵可压缩流动的速度势方程[1-1/a^2·(∂Φ/∂x)^2]∂^2Φ/∂x^2+[1-1/a^2·(∂Φ/∂y)^2]∂^2Φ/∂y^2-2/a^2·∂Φ/∂x·∂Φ/∂y·∂^2Φ/∂x∂y

7.3.2 线化的扰动速度势方程

如采用气流坐标系,即x轴与来流方向一致,来流只在x方向有分量,y方向无分量。物体的存在是流场上每一点的流速都相对于来流有了扰动速度u’,v’,这时流场上各点的速度分量分别为u=V∞+u',v=v'
所谓小扰动,指扰动速度相对于来流的V∞来说很微小:u'/V∞远小于1,v'/V∞远小于1
在这个前提下,可以引入扰动速度势φ,扰动速度势φ的方程比全速势Φ的方程可大大简化。
定义扰动速度势:∂φ/∂x=u',∂φ/∂y=v',Φ=V∞x+φ,u=V∞+∂φ/∂x,v=v'=∂φ/∂y
代入上式并由扰动速度与声速的关系得(a∞^2-V∞^2)∂^2Φ/∂x^2+a∞^2∂^2Φ/∂y^2=2(V∞v'+u'v')∂^2Φ/∂x∂y+[(γ+1)V∞u'+γ+1/2·u'^2+γ-1/2·V'^2]∂^2Φ/∂x^2+[(γ-1)V∞u'+γ-1/2·u'^2+γ+1/2·V'^2]∂^2Φ/∂y^2
上式是关于扰动速度势φ的方程,方程左端关于φ是线性的。右端的系数中有扰动速度,它们又分别是φ的偏导数,所以说右端是非线性项。上式和全速度势方程是等价的,因为导出式的过程中并未任何近似。
下面进一步考察在小扰动、非跨声速、非高超声速的条件下的扰动速度势方程。

  1. 假设自由流速度和声速不是太接近,即a∞^2-V∞^2不是小量。
  2. 流动不是高超声速,且同量级,即∂^2Φ/∂x^2~∂^2Φ/∂y^2~∂^2Φ/∂x∂y,则有u'^2-v'^2远小于V∞u'远小于a∞^2-V∞^2,(u'/v')/(V∞/a∞)远小于1
    可见在上述条件下,上式左端的线性项属于一阶小量,右端的非线性项都可以作为二阶或二阶以上的小量略去,从而得(a∞^2-V∞^2)∂^2φ/∂x^2+a∞^2∂^2Φ/∂y^2=0,整理得(1-Ma∞^2)∂^2φ/∂x^2+a∞^2∂^2Φ/∂y^2=0
    这就是在小扰动、非跨声速、非高超声速条件下的扰动速度势方程。比一般情况下的扰动速度势方程有很大简化,是一个线性的二阶偏微分方程。
7.3.3 线化的边界条件

对某个特定问题,方程的求解应在特定的边界条件下进行。通常边界条件包括物面和远场两类。在物面上,无黏流的边界条件是流动应与物面相切;在远场,速度为自由来流速度,扰动速度为零。
物面边界方程:∂φ/∂y|(y=±0)=V∞tanθu,l
远场边界方程:u'∞=0,v'∞=0或φ∞=const
由于速度势的具体数值不影响速度场,故可将上式中常数取为零。
方程和边界条件都是线性的情况下,方程的解就是可叠加的。与低速薄翼绕流类似,可压缩薄翼绕流的扰动速度势也可以分解为无厚度弯板、有厚度对称翼型和有迎角的平板三个流动的扰动速度势的叠加。

7.3.4 线化的压强系数

对于可压缩流动,压强系数可表示为Cp=2/γMa∞^2(p/p∞-1)
等熵条件下有p/p∞=(T/T∞)^(γ/γ-1)
当地温度和当地速度(进一步和扰动速度)的关系又可以由能量方程联系起来。
整理后得Cp=-2u'/V∞
可见小扰动假设下,略去二阶及以上小量后,压强系数也与无量纲的x向扰动速度成比例。这一特点与不可压流相同。同样,翼面压强系数也可近似分解为弯度、厚度、迎角三部分贡献的线性和。

7.4 亚声速线化流动的相似法则

对亚声速流动,引入β=sqrt(1-Ma∞^2)
可将线化的小扰动速度势方程改写为β^2∂^2φ/∂x^2+∂^2φ/y^2=0
可见亚声速流动的线化扰动方程是椭圆型方程。方程的数学性质和不可压流扰动速度势的方程相同。上式可通过简单的仿射变换,在形式上化为不可压流的扰动速度势方程。

7.4.1 戈泰特法则

亚声速线化流动控制方程为小扰动速势方程,为将亚声速线化流动转化为不可压无旋流动,需要同时完成方程和边界条件的变换。

  1. 方程和边界条件的变换
    引入坐标变换:ξ=x,η=βy。上式中,(ξ,η)表示相应的不可压流场中的空间坐标。记(ξ,η)平面的不可压流场的扰动速度势为φ1(下标1代表不可压),令φ1=kφ。
    式中,k为待定系数,代入上式得∂^2φ1/∂ξ^2+∂^2φ1/∂η^2=0,可见k取任何常数均可实现将亚声速流小扰动速度势方程变换成不可压流扰动速度势方程形式的目的。
    下面讨论边界条件的变化以及如何选择k以使两流动中的边界条件均得到满足。亚声速流动的扰动速度与变换后的不可压流动的扰动速度间的关系为u'=u1'/k,v'=βv1'/k
    亚声速和不可压流动的远场边界条件均是要求远场扰动速度为零。由上式可知远场条件对k的取值无要求。
    经过放射变换后,(ξ,η)平面不可压流场的物面应为上翼面:ηu=βyu=βhu(ξ),下翼面:ηl=βyl=βhl(ξ)
    再令两仿射流场的自由流速度相等,即V∞,l=V∞
    则不可压流场的物面边界条件要求:v1'|η=ηu=(∂φ1/∂η)η=ηu=V∞·dηu/dξ=V∞·β·dhu/dx
    亚声速流场的物面边界条件在上翼面为v'|y=yu=(∂φ/∂y)y=yu=V∞·dyu/dx=V∞·dhu/dx
    为满足物面边界条件的仿射变换,必须有k=β^2
    综上,亚声速流场和其仿射的不可压流场的变换关系为:ξ=x,η=βy
    物面方程:
    亚声速流场:yu=hu(x),yl=hl(x)
    不可压流场:ηu=βhu(ξ),ηl=βhl(ξ)
    扰动速度势:φl(ξ,η)=β^2φ(x,y)
    扰动速度:u'=u1'/β^2,v'=v1'/bβ
  2. 压强系数的变换
    将亚声速流场和其仿射相似的不可压流场的扰动速度关系式分别代入亚声速和不可压流动的线化压强系数公式,令V∞,l=V∞,得到两流场的压强系数间关系为Cp=Cp,l/β^2,式中,Cp和Cp,l分别表示亚声速和不可压流场相应点的压强系数。
    由此,戈泰特法则可叙述如下:亚声速线化流场的参数可由一个仿射变换的不可压无旋流场的相应参数间接求出,两流场的空间关系和相应点的流动参数分别由上式给出。
    戈泰特法则的适用范围和线化的小扰动速度势方程一致,因为在导出该法则时,没有引入新的限制条件。
  3. 戈泰特法则在亚声速薄翼型上的应用
    设在亚声速与不可压流场中有符合仿射变换关系式的两个翼型,其几何参数间的关系为c1=c,f1=βf,t1=βt,α1=βα
    式中,c,f,t,α分别表示翼型的弦长、弯度、厚度和迎角。
    比较两流场的流线对x轴的倾角θ和θ1的关系。仍设V∞,l=V∞,则θ≈tanθ=v'/V∞+u'≈v'/V∞,θ1≈θtan1=v1'/V∞+u1'≈v1'/V∞=βv/V∞,θ1≈βθ
    上式表明,不可压缩流场流线的倾角也为对应的亚声速流场相应流线倾角的β倍。可见按戈泰特法则转换后,不可压缩流场的尺寸和翼型一样,都在y方向按比例β减小。
    流场中和翼型表面的压强系数的转换关系由Cp=Cp,l/β^2确定。气动力系数和俯仰力矩系数的转换关系具有同样的形式。例如,亚声速流动的升力系数为CL=CL,l/β^2,类似,俯仰力矩系数满足CM=CM,l/β^2
    由此可知,对于按戈泰特法则变换的两个翼型,亚声速翼型的压强系数、升力系数和俯仰力矩系数均比相应的低速翼型大,为低速翼型的1/β^2倍。但应注意,亚声速流场中翼型的迎角、弯度也比低速流场情况的大,为低速流畅中翼型的1/β倍。
7.4.2 普朗特-葛劳渥特法则

戈泰特法则建立了亚声速六中一翼型与不可压流中迎角、相对弯度、相对厚度均为其β倍的另一翼型的压强系数间以及气动力系数间的关系。根据不可压流的薄翼理论可知,在线化条件下,物面压强系数近似与相对厚度、相对弯度和迎角成正比。联立此性质和戈泰特法则,就可导出亚声速流中一翼型与不可压流中同一翼型的压强系数与气动力系数之间的关系。
设翼型的迎角、相对弯度和相对厚度分别为α、f-、t-,在亚声速流中的压强系数、升力系数和力矩系数分别记为Cp,Ma∞、CL,Ma∞、CM,Ma∞,在不可压流中的则记为Cp,0,CL,0,CM,0。根据戈泰特法则,亚声速流中该翼型的压强和气动力系数应为迎角、相对弯度和相对厚度分别为βα、βf-、βt-的翼型在不可压流中的压强和气动力系数(记为Cp,l、CL,l、CM,l)的1/β^2倍,即Cp,Ma∞=Cp,l/β^2,CL,Ma∞=CL,l/β^2,CM,Ma∞=CM,l/β^2
而根据薄翼理论压强和气动力系数均近似地与相对厚度、相对弯度和迎角成正比,又有Cp,l=βCp,0···,联立上式可得:
Cp,Ma∞=Cp,0/sqrt(1-Ma∞^2),CL,Ma∞=CL,0/sqrt(1-Ma∞^2),CM,Ma∞=CM,0/sqrt(1-Ma∞^2)
上式就是普朗特-葛劳渥特法则,说明如果得到了某翼型不可压绕流的压强系数分布和翼型的气动力系数,那么在相同迎角下,绕相同翼型的亚声速流动的压强系数分布和亚声速条件下翼型的气动力系数就可由上式得到,它们相当于在亚声速条件下对不可压流结果进行的压缩性修正。普朗特-葛劳渥特法则表明二维亚声速薄翼的可压缩修正因子为1/β。

7.5 超声速二维翼型的线化解

对超声速流动,线化的小扰动速度势方程(二阶线性偏微分方程)是双曲型的,具有波动方程的形式,有达朗贝尔解。可以直接根据其解析解得到超声速薄翼型绕流的压强系数分布和翼型在超声速条件下的气动力系数。

7.5.1 物理模型和数学模型的建立

超声速气流流过物体时,如果物体头部较钝,在物体前面将产生一道脱体激波。由于脱体激波中有一段强度较大的正激波,物体将承受较大的激波阻力。
下面以双弧翼型为例,分析翼型超声速绕流的特点,进行必要简化提出合理的物理模型,并在此基础上建立正确的数学模型,即微分方程和边界方程。

  1. 物理模型
    设有给定的翼型,置于均匀的超声速气流中,超声速气流本来是非线性的,物理上表现为流场各点的声速随其他流动参数而变化,各点扰动的传播范围取决于当地的马赫数,某点的参数是该点前的依赖区各点参数变化累积的结果。因而在气流膨胀时会出现类似P-M膨胀波那样的非线性加速,而当气流遇到较大的压缩时会出现激波的非线性突跃。
    应用线化小扰动速度势方程求解超声速翼型绕流,其实是对本来非线性的问题要线性化。这要求放置在流场中的翼型对均匀来流产生的压缩或膨胀的强度都比较小,或者说对流场的扰动比较小。此时假定翼型各点的扰动均是以来流Ma∞作为变化的起点。上下翼面所产生的的马赫波是平直的。
    因此,超声速翼型绕流先化解的物理前提是:薄翼,小迎角,尖前缘(仍是尖后缘),Ma∞不高。总之,使翼型对均匀气流的扰动不大,不产生较强的激波,只有在这样的前提下,小扰动线化的假定才有意义。
  2. 数学模型
    对超声速流动,引入B=sqrt(Ma∞^2-1),将小扰动速度势方程改写为B^2∂^2φ/∂x^2-∂^2φ/∂y^2=0
    可见该方程是一双曲型的波动方程,方程中B=cotμ∞,μ∞为马赫角。
    首先看翼面边界条件。上下翼面型线方程分别为yu=hu(x)和yl=hl(x),当翼型很薄时,在y=±0处给出翼面边界条件,即∂φ/∂y|y=±0=V∞dhu/dx,∂φ/∂y|y=-0=V∞dhl/dx
    关于远场条件,由于超声速流动中小扰动是在扰源的后马赫锥(对平面流动是后马赫楔),故只需要考虑来流条件。又按照简化的物理模型,用平行的马赫波代替弱激波或膨胀波,因而来流条件是指前缘处马赫波前的扰动势速度φ值为零。翼型前缘上下两道马赫波的方程分别为x-By=0和x+By=0,所以来流条件可写为φ|x±By≤0=0
7.5.2 线化方程的求解
  1. 方程解的形式
    B^2∂^2φ/∂x^2-∂^2φ/∂y^2=0是一波动方程,具有达朗贝尔解。其通解形式为φ(x,y)=f(x-By)+g(x+By)
    式中,函数f和g的具体形式有边界条件确定。
    翼型的小扰动是一不变的形式沿着这些直线传播出去进入流场的,这个条件也满足无穷远处的条件。若φ中只有f(x-By)部分,意味着沿x-By=const的直线,流动参数是常数,这些直线是一族相互平行的由Ma∞确定的左伸马赫线。类似地,若φ中只有g(x+By)部分,意味着沿x+By=const的直线,流动参数是常数,这些直线是一族相互平行的由Ma∞确定的右伸马赫线。
    假定流动由左向右,薄翼型是扰动源,二维小扰动应在翼型的后马赫楔内传播。对上翼型以上的翼型上部流场,φ中的g(x+By=0),即φ+(x,y)=f(x-By)。而下翼面以下的翼型下部流场,φ中的另一部分f(x-By)=0,即φ-(x,y)=g(x+By)。
    由上式可知,在每一条左伸马赫线x-By=const上,φ+保持不变;而在右伸马赫线x+By=const上,φ-保持不变。
  2. 方程的特解
    某一具体翼型的特解,也就是函数f和g的具体形式,需由边界条件来确定。
    在上翼面,将翼型上部流场扰动势函数式代入线化的翼面边界条件式得∂φ+/∂y|y=+0=-Bf'(x)=V∞hu'(x),于是有f'(x)=-V∞/B·hu'(x),从而得f(x)=--V∞/B·hu(x)+const
    式中,常数可取为零,不影响扰动速度。因此对上部流场由f(x-By)=-V∞/B·hu(x-By),同理对下部流场有g(x+By)=V∞/Bhl(x+By)
    需要注意,上式只适用于0<x±By<c的流场范围。翼型尾流区扰动为零。流动线化后,扰动的传播就已经简化为只沿这些平行的由Ma∞确定的马赫线传播,因而传播范围也就只局限在翼型的前、后缘发出的马赫线间的范围内。
7.5.3 翼面压强分布和翼型气动力系数
  1. 翼面压强系数
    由扰动速度势函数φ的解式可得上、下部流场的x向扰动速度为u'+(x,y)=V∞/B·hu'(x-By),u'-(x,y)=V∞/B·hl'(x+By),则在翼型上表面有u+'(x,y)|y=hu(x)=-V∞/B·θu
    翼型下表面有u-'(x,y)|y=hl(x)=V∞/B·θl
    式中,θu、θl分别为翼型上下表面的当地迎角,亦即气流与当地物面切向的夹角。
    根据可压缩流的线化压强系数公式,即得翼型上下部流场的压强系数分别为:Cp+=-2u+'/V∞=2/Bhu'(x-By),Cp-=-2u-'/V∞=-2/Bhl'(x+By)
    特别地,上下翼面的压强系数分别为Cp+,w=2/B·θu,Cp-,w=-2/B·θl
  2. 线化流动图像的进一步分析
    流场的压强系数公式说明,当地的扰动是由翼型在该处的斜率决定的,与超声速翼型的线化流动图像一致。线化的超声速流动中,翼型对流场的扰动看成翼型的各个局部放在来流中产生的扰动,每条马赫波前第来流的参数,波后则是受到当地扰动后的参数,同一马赫波后的参数是相等的。因此每条马赫波使孤立的、具有一定强度的、深至无穷远处的波,流场就由这些平行的马赫波组成。
    由翼面压强系数公式可知,翼面各点压强系数值取决于当地翼型的斜率(气流系下即当地迎角)。上翼面若斜率为正值,则Cp+,w为正,说明来流在此受压缩,若斜率为负,Cp+,w为负,说明来流在此膨胀。下翼面则相反。翼型任何点斜率的局部变化,仅影响该处的参数,并不像亚声速流那样影响全流场各处。
    应指出,超声速翼型线化解的流动图像在许多地方歪曲了真实的流动图像,但线化解却揭示了超声速流动问题中最基本的性质,即超声速来流的可压缩影响。因此在一定条件下,其结果还是接近实际的。
  3. 翼型的气动力系数
    已知翼型上的压强分布后,可以进一步确定翼型的升力系数、阻力系数和力矩系数。为分别研究迎角和翼型形状(厚度和弯度)对升力和阻力和影响,可将翼型在气流坐标系下的当地倾角θu、θl和迎角α和翼型在体轴系下的倾角σu和σl表示,有θu=σu-α,θl=σl-α
    此处σu、σl分别为上下翼面在任意两点M1和M2处的切线与翼弦方向ξ。θu、θl、σu、σl、α均以逆时针为正。代入压强系数公式后得Cp+,w=2/sqrt(Ma∞^2-1)·(σu-α),Cp-,w=-2sqrt(Ma∞^2-1)·(σl-α)
    1 . 升力系数
    升力系数可由上下翼面压强系数的差积分得到,整理得CL=4α/sqrt(Ma∞^2-1)
    上式表明,超声速二维薄翼的升力系数与迎角成正比,而与翼型的形状无关。
    2 . 阻力系数
    阻力是作用于翼面的压力在气流方向(即x轴正向)的投影,整理得CD=4α^2/sqrt(Ma∞^2-1)+2(σu-^2+σl-^2)/sqrt(Ma∞^2-1)
    式中,σu-^2σl-^2分别是翼型上下表面倾角σu和σl平方的平均值。
    。可见对超声速翼型绕流,不计黏性时仍有阻力,称为波阻。超声速翼型的波阻本来是由激波损失引起的,在线化解中,则被认为波阻是由于气流受扰动而沿着马赫线不断将流量向无穷远处传播的结果,上式中第一项是因为翼型有迎角,即由于存在升力而产生的阻力,称为零升波阻。由于翼型的厚度和弯度对升力无贡献,徒增波阻,所以超声速翼型最有利的形状是弯度和厚度均为零,即无厚度的平板。超声速翼型通常可取弯度为零的对称翼型。
    3 . 俯仰力矩系数
    对前缘的力矩系数(取抬头为正)为CM,LE=--1/2·CL+2/c^2sqrt(Ma∞^2-1)·(A--A+),式中,A-和A+分别表示翼型在几何弦上下的剖面面积。这是因为力矩系数也包含两部分。第一项来源于迎角或者说升力;第二项来源于翼型的非对称性(弯度),称为零升力矩系数。对称翼型的俯仰力矩系数只有第一项,为CM,LE=-2α/sqrt(Ma∞^2-1)
    根据超声速翼型的力矩系数公式,可以确定超声速翼型的无量纲焦点位置为xF-=1/2
    可见超声速翼型的焦点位于1/2弦长处。对无弯度的对称翼型,压力中心与焦点重合。
    前面知道低速薄翼的焦点(即气动中心)位于1/4弦长点,亚声速流动是翼型的气动力系数需要采用普朗特-葛劳渥特法则进行可压缩修正,不过焦点位置并无变化,但到超声速后,翼型的焦点位置显著后移。
7.6 细长旋成体理论
7.6.1 旋成体的集合参数即绕流图

旋成体是由一条母线(光滑的曲线或折线)绕某轴旋转而成的物体。盖州称为旋成体的体轴,母线称为旋成体的子午线,包含有体轴的任一平面称为旋成体的子午面。
用于亚声速飞行的旋成体一般选用圆弧形或卵型头部,以使外形更接近于流线型以减小阻力。
用于超声速飞行的旋成体一般采用尖锥形或具有卵型头部的钝锥形,这样的头部有利于降低超声速绕流特有的波阻。

  1. 旋成体的几何参数
    旋成体的研究中,更常采用的是柱坐标系,描述旋成体的主要几何参数为:
    1 . R(x)]:旋成体母线沿体轴的半径分布:RM:旋成体的最大半径
    2 . L:旋成体的总长度,若R(x)是x的分段函数,L头、L柱和L尾分别为旋成体的头部、圆柱段和尾部的长度。
    3 . S(x):旋成体沿体轴的横截面积分布,S(x)=π[R(x)]^2;SM:旋成体的最大横截面积,SM=πRM^2
    4 . λ=L/2RM:旋成体的长细比,细长旋成体就是长细比较大的旋成体。
    5 . η=Rd^2/RM^2:旋成体尾部的收缩比,是选成套尾部截面积与最大截面积之比。
  2. 旋成体的绕流图画
    这里主要观察绕选流体的轴对称流动。定义迎角为来流与旋成体体轴之间的夹角,那么当直匀来流以零迎角流过旋成体时,流动将是轴对称的,任一子午面上的流动完全相同。绕旋成体的低、亚声速轴对称流动,其绕流图与绕零迎角二维对称翼型的低、亚声速流动相似。与翼型厚度对气流的作用一样,旋成体将迎面来流的气体微团向四周推开,相同厚度和来流马赫数条件下,旋成体对气流产生的扰动将小于二维对称翼型。超声速气流绕流旋成体时,流场中间会出现激波和膨胀波。当头部是圆锥时,将产生圆锥激波,同样由于三维效应,其激波要比相同来流马赫数条件下同样顶角的楔形体产生的激波弱,并且圆锥激波后的流线是弯曲的。
    旋成体的有迎角绕流在迎角不大时流动图画与轴对称流动类似,但流动不再是轴对称的。细长旋成体的小迎角绕流,可转换为在轴对称流动上叠加一个横向扰动来分析。
7.6.2 柱坐标系下的小扰动线化方程、边界条件和压强系数

定常无黏流存在速度势的条件是:流动同时又是无旋的。对于低速或亚声速流动,,无黏意味着流动等熵,来流均匀条件下也就匀熵因而无旋。对于超声速流动,因为激波的存在而有熵增。但对细长体,并且以小迎角飞行时,跨过激波的熵增可以略去不计,流场仍然匀熵、无旋,存在速度势。

  1. 柱坐标系下的速度势方程
    经整理后得(a^2-Vx^2)∂^2Φ/∂x^2+(a^2-Vr^2)∂^2Φ/∂r^2+(a^2-Vθ^2)∂^2Φ/r^2∂θ^2-2(VxVr∂^2Φ/∂x∂r+VθVr∂^2Φ/∂θr∂r+VθVx∂^2Φ/∂θr∂x)+Vr/r(a^2+Vθ^2)=0
    上式即为柱坐标系下无黏、定常、等熵可压缩流动的速度势方程,方程中的速度还可以继续根据势函数的偏导数表达,声速也可以根据绝热流的能量方程采用速度进一步用势函数的偏导数表达。但虽然全速度势方程只包含一个未知函数Φ,却仍是一个复杂的非线性方程。
  2. 柱坐标系下的线化小扰动速度势方程
    针对细长体在小迎角飞行时对流场的扰动为小扰动的特点,引入扰动速度势,在略去小量后可得到线化的扰动速度势方程。
    小扰动指扰动速度相对于来流的V∞很微小,即(Vx'/Vr'/Vθ')/V∞远小于1
    定义扰动速度势:∂φ/∂x=Vx',∂φ/∂r=Vr',∂φ/r∂θ=Vθ'
    设扰动速度势即其偏导数均为一阶小量。扰动速度势和全速度势之间及其偏导数之间的关系经整理得(1-Ma∞^2)∂^2φ/∂x^2+∂^2φ/∂r^2+∂^2φ/r^2∂θ^2+1/r·∂φ/∂r=0
    适用于小扰动、非高超声速、非跨声速条件。
  3. 边界条件
    无穷远处,速度为自由来流速度,扰动速度为零,有∂φ/(∂x/∂r/r∂θ)=0,可取φ∞=0。
    旋成体1物面上,流动与物面相切。由于将旋成体的体轴取为x轴,速度分量Vθ自动与物面相切,因而只需要在子午面内规定物面边界条件,即旋成体的子午线切线方向为流速方向:Vr/Vx|r=R=dR/dx
    对于细长体,dR/dx远小于1,上式略去二阶及以上小量后可得线化的物面边界条件:(V∞αcosθ+∂φ/∂r)|r=R=V∞dR/dx
  4. 压强系数
    对小迎角的细长旋成体绕流,略去三阶及以上小量。对细长旋成体绕流,进一步简化为:Cp=-2Vx'/V∞-2α(cosθVr'-sinθc)/V∞-(Vr'^2+Vr'^2)/V∞^2
    压强系数为二阶小量,压强系数和扰动速度也不再是线性关系。
    方程和边界条件均为线性的情况下,可将流动分解。对于非线性的压强系数Cp,w,一定条件下,利用特殊的分解方式可叠加。
7.6.3 细长旋成体的轴向绕流
  1. 扰动速度势方程,边界条件和压强系数
    对于绕细长旋成体的轴对称流动,即α=0,每一个子午面内流动相同,∂/∂θ=0,线化的小扰动速度势方程为(1-Ma∞^2)∂^2φ/∂x^2+∂^2φ/∂r^2+1/r·∂φ/∂r=0
    对低速不可压流动,上式即拉普拉斯方程。亚声速来流是,方程为β^2∂^2φ/∂x^2-∂^2φ/∂r^2-1/r·∂φ/∂r=0
    式中,β=sqrt(1-Ma∞^2)。超声速来流时,方程为B^2∂^2φ/∂x^2-∂^2φ/∂r^2-1/r·∂φ/∂r=0
    式中,B=sqrt(Ma∞^2-1)。
    将α代入线化的物面边界条件式,得∂φ/∂r|r=R(x)=V∞dR/dx
    对压强系数式应用轴对称条件:α=0、Vθ’=0,则有Cp=-2/V∞·∂φ/∂x-1/V∞^2·(∂φ/∂r)^2
  2. 亚声速点源和超声速点源
    细长旋成体轴对称绕流的小扰动速度势方程和边界条件都是线性的,故可采用基本解叠加法求解。流动不可压时,小扰动速度势方程为拉普拉斯方程,有空间点源、点涡等基本解。由于点源对气流有撑开作用,并且各个方向一致,因此可沿旋成体轴线分布合适强度的空间点源,模拟细长旋成体对直匀来流的扰动。
    对亚声速流动,可通过坐标变化:x0=x,r0=βr。
    将小扰动速度势方程变换为拉普拉斯方程,推知上式有以下形式的基本解:φ(x,r)=-Q/4π·sqrt((x-ξ)^2+β^2r^2)
    上式即位于旋成体轴线上某点(ξ,0)、强度为Q的亚声速点源在空间某点(x,r)引起的速度势。
    对于超声速流动,可通过坐标变换:x0=x,r0=iBr
    将小扰动速度势方程变换为拉普拉斯方程,推知上式有以下形式的基本解:φ(x,r)=-2Q/4π·sqrt((x-ξ)^2-β^2r^2)
    上式为强度为Q的超声速点源在空间某点(x,r)引起的速度势。需要说明,超声速流动的小扰动速度势方程为双曲型方程,数学性质与拉普拉斯方程不同。上式的变换引入了虚数,无明确物理意义。
  3. 确定源强度分布的方程
    1 . 亚声速流动
    设在旋成体轴线上分布亚声速点源,记(ξ,0)处单位长度轴线上源的强度为f(ξ),则dξ微段上分布的源在空间任一点P(x,r)产生的扰动速度势为dφ(x,r)=-1/4π·f(ξ)dξ/sqrt((x-ξ)^2+β^2r^2)
    对亚声速绕流,点源的扰动可以传播到四面八方。整个旋成体轴线上分布的所有源都会对p点产生影响,p点的扰动速度势为φ(x,r)=-1/4π·∫(0-L)f(ξ)dξ/sqrt((x-ξ)^2+β^2r^2)
    源强分布函数f(ξ)的具体形式需要根据流动边界条件确定,将上式代入边界条件式,得到1/4π·β^2R·∫(0-L)f(ξ)dξ/[(x-ξ)^2+β^2r^2]^3/2=V∞·dR/dx
    上式即为亚声速零迎角绕流细长旋成体时确定亚声速点源强度分布函数的积分方程。
    2 . 超声速流动
    由于超声速流动中小扰动仅在扰源的后马赫锥内传播,所以P点只能受到位于其前置马赫锥内“超声速点源”的影响,P点前置马赫锥与x轴交点的坐标为x-r/tanμ∞=x-Br
    上式中,μ∞为马赫角。P点只能受到位于ξ=0和ξ=x-Br之间的“超声速点源”的影响,其扰动速度势为φ(x,r)=-1/2π·∫(0-x-Br)·f(ξ)dξ/sqrt((x-ξ)^2-B^2r^2)
    同样,源强分布函数f(ξ)需由边界条件确定。
    经整理后得到超声速零迎角绕流细长旋成体时确定“超声速点源”分布强度的积分方程1/2πR·∫(0-x-Br)f'(x-ξ)(ξ)dξ/sqrt((x-ξ)^2-B^2R^2)=V∞dR/dx
    上面对亚声速和超声速绕流,分别得到了确定源强度分布函数f(ξ)的积分方程。
  4. 极细长旋成体轴向绕流的渐近解
    下面对特别细长的旋成体,即R远小于L或者说R→0的旋成体,在物面附近(r→0)时,引入进一步简化,确定相应的点源分布和扰动速度势,进而得到解析形式表示的物面压强系数。
    1 . 亚声速流动
    当R很小时积分方程左端积分的主要贡献集中于x-ξ=0附近的源。
    φ(x,r)=V∞S'(x)/2π·Inr+φ*(x,β)
    可见扰动速度势有两部分组成,第一部分只与r有关,正好相当于横截平面中二维不可压点源的速度势;第二部分φ*(x,β)只与x和β有关,与r无关。
    2 . 超声速流动
    极细长体条件下物面附近的扰动速度势:φ(x,r)=f(x)/2π·InBr/2-1/2π·∫(0-x)f'(ξ)In(x-ξ)dξ
    式中的源强分布函数f(x)由物面边界条件确定,得f(x)=2πV∞RdR/dx=V∞dS/dx
    上式中,S为旋成体横截面积。上式表明“超声速点源”强度分布函数与当地横截面积S(x)沿x轴的变化率成正比。
    整理得φ(x,r)=V∞S'(x)/2π·Inr+φ*(x,β),φ*(x,β)=[V∞S'(x)/2π·InB/2-V∞/2π∫(0-x)S''(x)In(x-ξ)dξ]
    由上式可见,超声速情况下极细长旋成体的轴向绕流扰动速度势也由两部分组成,第一部分与r有关,正好相当于横截平面中二维不可压点源的速度势;第二部分φ*(x,β)只与x和B有关,与r无关。
    可得扰动速度与物面压强系数。
    对旋成体表面压强积分,可得到作用于旋成体的合力。该合力是沿来流方向的阻力,是超声速流动特有的波阻,称为零升波阻。
7.6.4 小迎角细长旋成体绕流

当来流迎角不为零时,绕旋成体的流动不再是轴对称的。扰动速度势方程需要采用(1-Ma∞^2)∂^2φ/∂x^2+∂^2φ/∂r^2+∂^2φ/r^2∂θ^2+1/r·∂φ/∂r=0,边界条件采用(V∞αcosθ+∂φ/∂r)|r=R=V∞dR/dx。由于方程和边界条件都是线性的,因此满足叠加原理。可将此时的流动视为在轴对称绕流的基础上又添加了一个扰动,将流动的扰动速度势分解为两部分:φ=φ1+φ2。下面讨论φ2的求解。

  1. 扰动速度势和物面压强系数的分解
    1 . 边界条件的分解
    φ=φ1+φ2代入边界条件式,有(V∞αcosθ+∂φ1/∂r+∂φ2/∂r)|r=R=V∞dR/dx。由于轴向绕流扰动速度势φ1的边界条件为∂φ1/∂r|r=R=V∞dR/dx和∂φ2/∂r|r=R=-V∞αcosθ
    上面两式是φ1和φ2的物面边界条件,无穷远处有φ1,∞=0,φ2,∞=0
    2 . φ2的物理含义
    φ2满足来流速度为V∞α的旋成体横向绕流的边界条件。由于小迎角细长旋成体绕流的扰动速度势φ和轴向绕流的扰动速度势φ1均满足线化的扰动速度势方程,所以φ2=φ-φ1也满足扰动速度势方程:(1-Ma∞^2)∂^2φ2/∂x^2+∂^2φ2/∂r^2+∂^2φ2/r^2∂θ^2+1/r·∂φ2/∂r=0,说明φ2对应的流动其自由来流方向仍是接近x轴,自由流速度为V∞,而非自由流速度为V∞α的旋成体横向绕流。再由φ2=φ-φ1可知,φ2实际上是速度为V∞的直匀流中旋成体迎角由零变为非零引起的扰动速度势的增量,即φ2=φα≠0-φα=0
    此处φα≠0就是小迎角旋成体绕流的扰动速度势,φα=0就是原旋成体轴向绕流的扰动速度势。
    为方便,称φ2为旋成体的“横向绕流”扰动速度势。小迎角细长旋成体绕流的扰动速度势可以分解为迎角为零的轴向绕流和横向来流速度为V∞α的“横向绕流”得扰动速度势之和。
    3 . 物面压强系数的分解
    由于非线性,流场中的压强系数通常包含交叉项,不能采用叠加原理。也即,虽然小迎角细长旋成体绕流的扰动速度势可分解为轴向绕流和“横向绕流”的扰动速度势之和,但压强系数不是两者之和。
    小迎角旋成体绕流的物面压强系数可由二者叠加得到:Cp,w=Cpa|r=R+Cpc|r=R,其中,前一项为轴向绕流的物面压强系数,后一项为“横向绕流”的物面压强系数。
  2. φ1和φ2形式上的联系
    已知φ2是在旋成体轴向绕流的基础上增加了恒横流后引起的扰动速度势增量。从旋成体的横截平面看,是增加了来流速度为V∞α的圆柱横向绕流。不可压流中圆柱横向绕流可由偶极子模拟,其势函数可由点源的势函数对源汇连线方向求偏导数得到,此处用可压缩的旋成体轴向绕流采用轴线上分布亚声速点源或“超声速点源”模拟。
    轴向绕流扰动速度势φ1满足的方程为(1-Ma∞^2)∂^2φ1/∂x^2+∂^2φ1/∂r^2+1/r·∂φ1/∂r=0
    整理得φ2=c∂φ1/∂r·cosθ,式中c为常数。
  3. “横向绕流”的扰动速度势
    1 . 亚声速流动
    2 . 超声速流动
  4. 极细长旋成体“横向绕流”的渐近解
    1 . 亚声速流动
    φ2(x,r,θ)=V∞αcosθ(x)/πr=V∞αcosR^2(x)/r
    2 . 超声速流动
    φ2(x,r,θ)=V∞αcosθ(x)/πr=V∞αcosR^2(x)/r
    3 . 压强系数
    Cpc|r=R=-4αcosθdR/dx+(1-4sin^2θ)α^2
7.6.5 极细长旋成体的气动特性

确定物面压力分布后,就可以在整个物体表面积分得到细长旋成体的升力、阻力和力矩特性。
举例,来流速度为V∞、迎角为α的气流流过细长旋成体,作用于旋成体上的升力为L,阻力为D。在以旋成体体轴为x轴的坐标系下,垂直于体轴方向的力称为法向力,用N表示;平行于体轴方向的力称为轴向力,用A表示。对旋成体顶点的俯仰力矩记作Mz。定义法向力系数和轴向力系数分别为CN=N/(1/2·ρ∞V∞^2SM),CA=A/(1/2·ρ∞V∞^2SM)
上式中,SM为旋成体的最大横截面积。俯仰力矩系数定义为CMZ=MZ/(1/2·ρ∞V∞^2SML旋成体),为旋成体长度。

  1. 法向力系数CN的计算
    法向力是旋成体上压强在垂直于体轴方向上的合力。
    对极细长旋成体,小扰动线化假设范围内,沿轴向单位长度的法向力与来流迎角α和S’(x)成正比。
    对尖头旋成体,S(0)=0,则N=ρ∞V∞^2S(L),式中,S(L)为旋成体底部横截面积。所以以旋成体最大横截面积SM作为参考面积得法向力系数为CN=2αS(L)/SM
    若细长体为尖头、尖尾,S(L)=0,则所受法向力为0。
    由于气流黏性的影响,旋成体尾部实际向下的法向力比理论小,尖头尖尾的细长旋成体实际会受到一个小的向上的法向力。
  2. 俯仰力矩系数CM的计算
    取抬头力矩为正,仅横流的压强系数对俯仰力矩由贡献。
    Mz=-ρ∞V∞^2α[LS(L)-Ωw],式中,Ωw为旋成体体积。俯仰力矩系数为CM=-2α[S(L)/SM-Ωw/SML]
    旋成体的压力中心为xcp=[1-Ωw/S(L)L]L或xcp-=1-Ωw/S(L)L
    另外,对于尖头尖尾细长旋成体,由上式知总法向力为零,且仍有一抬头力矩作用于其上,与迎角α成正比。起作用是使旋成体不稳定。
  3. 轴向力系数CA的计算
    轴向力是旋成体表面上压强在沿体轴方向上的合力。
    CA=Aa+Ac/1/2·ρ∞V∞^2SM=Aa/2·ρ∞V∞^2SM-α^2·S(L)/SM=CA,0-α^2·S(L)/SM
    式中,CA,0称为零升波阻系数,是超声速流动时轴向绕流产生的轴向力Aa的贡献。
  4. 升力和阻力系数
    升力系数为CL=CNcosα-CAsinα约等于CN-CAα≈2αS(L)/SM-CA,0α
    通常CA,0远小于2。升力系数可以进一步近似为CL=2αS(L)/SM
    阻力系数为CD=CNsinα+CAcosα
    来流为亚声速时,有CD≈CNα+CA=α^2S(L)/SM
    来流为超声速时,有CD≈CNα+CA=α^2S(L)/SM+CA,0
    阻力系数中与迎角有关的部分称为诱导阻力系数,用CD,i表示。
    应当指出,实际流动中的阻力系数计算还应计及黏性引起的摩擦阻力。(The End)
霹雳天机

在这里插入图片描述

天机启,万象大衍造玄奇,血路承,穹宇浩劫自太曦,
气数转,璇玑一拨谁斗棋?风云合,且任逍遥共忘机。

「看经典重角震撼回归,再写全新故事」

霹雳天机系全新系列作,由天迹、地冥双主角领衔主演,双主线开启新故事。看天迹如何在逆势之中,统领群侠,对抗鲸吞中原的太曦神照。而失联久时的地冥,悄悄集结数名能人暗中行动,他为何不现身,又将翻搅何等风云?

「看新人鹊起引领风骚,谱写恩怨情义」

霹雳天机有新一代的偶像阵容,武林群星熠熠争辉。看一剑忘机道轩眉飘然入世,将为未来武林,扭转何等乾坤?看暗潮冷啸伐楼那踏入苦境,他要如何寻得圣焰之源,解救家国之变?更看白垩旷野的占星师――星桥引者解璇玑,如何游走正邪之间,卜测天下之谜。

「看枭雄叱吒并起,播弄乾坤扑朔迷离」

霹雳天机有坚强的反派主力,看掌握巨大寰界能量的太曦神照,并吞魔罗血界,广纳各方能人,如何独写霸业?看阴阳裂界父子枭雄――帝裔八龙天、往世阎摩如何动乱人世?也看八龙天、伐楼那「父杀子」预言,峰回路转如何演变?

「看剧情崭新编排,四大篇章高潮迭起」

霹雳天机以崭新的编排方式,讲述霹雳武林新一页的故事。第一部共分四大篇章,首篇【裂界】篇以双线并进的方式,带出过往两年,天迹流落裂族,如何抽丝剥茧,解开一场「尚未看见题目的考验」;另一边,则带出苦境的浑沌现况。接续而来的【魔熵】、【西崦】等篇,更将串联玄黄三乘、靖玄九星,至六蚀玄曜以来,横跨多档,众多未解之谜,更多牵引未来武林风云变化之秘,尽在全新的霹雳天机。

万众期盼,连台好戏,2023年,千万不可错失,霹雳国际多媒体年度钜献,黄文择布袋戏最新强档力作――霹雳天机。

  • 3
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

【执珪】瑕瑜·夕环玦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值