
空气动力学
文章平均质量分 88
【执珪】瑕瑜·夕环玦
兵安在?膏锋锷。民安在?填沟壑。叹江山如故,千村寥落。何日请缨提锐旅,一鞭直渡清河洛。却归来、再续汉阳游,骑黄鹤。
展开
-
空气动力学(笔记自留)-第七章(文末附彩蛋)
第七章 翼型与细长旋成体起动特性的近似计算方法本章介绍飞行器典型部件模型的气动特性近似计算方法。7.1 翼型的几何描述与空气动力系数翼型时飞机机翼和尾翼成型的重要组成部分,直接影响飞机的气动性能和飞行品质。7.1.1 翼型的几何参数对于不同的飞行速度,机翼的翼型形状是不同的。翼型上下表面由一定形状的曲线连成。翼型的最前端点称为前缘点,最后端点称为后缘点。翼型前后缘点的连线称为翼型的几何弦。前后缘点之间的距离称为翼型的弦长,用c表示。翼型的几何特性以弦线为基准线(x轴)来描述。上下翼面型线的方程原创 2023-07-07 11:18:01 · 6022 阅读 · 0 评论 -
空气动力学(笔记自留)-第六章
采用湍流模型解决封闭性问题时,就可以数值求解或近似求解雷诺方程,得到湍流状态下的流动特性。这里简要介绍平板湍流边界层的流动特性,并给出近似解的典型结果。层流和湍流边界层速度剖面特点考虑流过光滑平板的不可压流动。若雷诺数足够高,则平板上方存在三种不同的流动区域。从前缘开始,第一个区域(0<Rex<rextr)是层流或具有小振幅不稳定波的层流,越向下流,层次路边界层越厚;第二个区域(Rextr<Rex<Rext)以湍流斑点首先出现的xtr处为起点,以完成从层流到湍流的完全转变处xt为终点;原创 2023-07-02 20:58:58 · 4211 阅读 · 0 评论 -
空气动力学(笔记自留)-第五章
第五章 无黏可压缩流动当马赫数(气流速度与声速之比)大于0.3时,就必须考虑气体的可压缩性。首先通过分析气体经过小扰动波的流动导出声速,并讨论马赫数在反映小扰动传播范围上的物理含义。对于可压缩流动,质量方程和动量方程还不能封闭求解,必须联立能量方程。本章从无黏的一维定常绝热流总焓方程出发,导出各种形式的能量方程,给出定常绝热流和等熵流中各流动参数沿流线的变化关系。在此基础上,研究几类最简单的绝热或等熵可压缩流动:超声速流动中的激波和膨胀波,气体沿变截面管道的流动5.1 声速和马赫锥本节通过对小扰动波应原创 2023-06-28 22:45:43 · 6568 阅读 · 0 评论 -
空气动力学(笔记自留)-第四章
无旋流动存在势函数Φ,势函数的梯度即速度,即V=▽Φ。根据不可压流的连续方程,V·▽=0。于是有▽·(▽Φ)=▽^2Φ=0。可见不可压无旋流的势函数满足拉普拉斯方程。对平面不可压无旋流动,势函数满足的拉普拉斯方程为。对于平面不可压流,存在流函数Ψ,且有∂Ψ/∂x=-v,∂Ψ/∂y=u。当流动无旋时,有∂v/∂x-∂u/∂y=0。或▽^2Ψ=0。也就是说,不可压平面无旋流动的流函数也满足拉普拉斯方程。原创 2023-06-22 17:06:35 · 4660 阅读 · 1 评论 -
空气动力学(笔记自留)-第三章(下)
特别地,对于不可压流,由于密度ρ为已知的不变常数,所以质量方程和动量方程,就可构成一个关于压力p和速度V的封闭方程组,可由此先解出压力和速度,之后再由能量方程求解内能或温度。W·为外界对系统的做功率,包括彻体力和表面力的做功率,对于理想流体,只有彻体力和压力的做功率。从流动控制方程求解的角度看,两个流动相同的要求是两者的有量纲的控制方程和定解条件完全相同,因而有量纲解相同。绕真实的全尺寸飞行器的和绕其缩比模型的两流动,虽然有量纲控制方程相同,但由于边界条件中的优良刚物面方程不同,因此两流动的有量纲解不同。原创 2023-06-18 19:18:51 · 1673 阅读 · 0 评论 -
空气动力学(笔记自留)-第三章(上)
第二种是气流流经一段管道,管内可以有其他物体,也可以是空的,这时管壁和管内机件表面合起来作为控制面S1,进口和出口两个截面合起来为式中的控制面S,只要知道了进出口两个截面上的流动参数,就可以求得管壁和管内机件受到的合力。积分形式的动量方程是流体力学中最常用的基本方程之一,其优点在于:流动定常的情况下,只要知道控制体进出口(控制面)的流动情况,就可以求得总合的作用力,无须知道控制体内部的流动细节。若所要求的只是总合的作用力,这时就可以转为研究有限大体积的流体系统或控制体,建立积分形式的动量方程来解决问题。原创 2023-06-17 15:46:32 · 1717 阅读 · 0 评论 -
空气动力学(笔记自留)-第二章
定常流场中通过某固定点的迹线只有一条,非定常流场中,通过同一点的迹线可以有多条,不同时刻经过该点的流体质点可以走不通的轨迹线。在给定瞬间t流场中的假想曲线,该曲线上各点处的切线方向都与流场该点处的速度矢量V方向一致(相重合),或者说与此时位于该点处的流体质点的速度方向一致。a,b,c,t为拉格朗日坐标/变数,用矢径表示流体质点的位置,上述任意质点的轨迹方程可写为:r=r(a,b,c,t)。沿用描述刚体运动的方法,着眼于流体质点/微团,跟踪质点的运动,记录质点在运动过程中各种物理量的变化规律。原创 2023-06-15 09:27:03 · 2624 阅读 · 0 评论 -
空气动力学基础(笔记自留)-第零至第一章
公元前到19世纪的流体力学发展20世纪:空气动力学建立完整体系。原创 2023-06-12 09:14:46 · 2002 阅读 · 0 评论