ECC是什么

 

 ECC是“Error Checking and Correcting”的简写,中文名称是“错误检查和纠正”。ECC是一种能够实现“错误检查和纠正”的技术,ECC内存就是应用了这种技术的内存,一般多应用在服务器及图形工作站上,这将使整个电脑系统在工作时更趋于安全稳定。

    要了解ECC技术,就不能不提到Parity(奇偶校验)。在ECC技术出现之前,内存中应用最多的是另外一种技术,就是Parity(奇偶校验)。我们知道,在数字电路中,最小的数据单位就是叫“比特(bit)”,也叫数据“位”,“比特”也是内存中的最小单位,它是通过“1”和“0”来表示数据高、低电平信号的。在数字电路中8个连续的比特是一个字节(byte),在内存中不带“奇偶校验”的内存中的每个字节只有8位,若它的某一位存储出了错误,就会使其中存储的相应数据发生改变而导致应用程序发生错误。而带有“奇偶校验”的内存在每一字节(8位)外又额外增加了一位用来进行错误检测。比如一个字节中存储了某一数值(1、0、1、0、1、0、1、1),把这每一位相加起来(1+0+1+0+1+0+1+1=5)。若其结果是奇数,对于偶校验,校验位就定义为1,反之则为0;对于奇校验,则相反。当CPU返回读取存储的数据时,它会再次相加前8位中存储的数据,计算结果是否与校验位相一致。当CPU发现二者不同时就作出视图纠正这些错误,但Parity有个缺点,当内存查到某个数据位有错误时,却并不一定能确定在哪一个位,也就不一定能修正错误,所以带有奇偶校验的内存的主要功能仅仅是“发现错误”,并能纠正部分简单的错误。

    通过上面的分析我们知道Parity内存是通过在原来数据位的基础上增加一个数据位来检查当前8位数据的正确性,但随着数据位的增加Parity用来检验的数据位也成倍增加,就是说当数据位为16位时它需要增加2位用于检查,当数据位为32位时则需增加4位,依此类推。特别是当数据量非常大时,数据出错的几率也就越大,对于只能纠正简单错误的奇偶检验的方法就显得力不从心了,正是基于这样一种情况,一种新的内存技术应允而生了,这就是ECC(错误检查和纠正),这种技术也是在原来的数据位上外加校验位来实现的。不同的是两者增加的方法不一样,这也就导致了两者的主要功能不太一样。它与Parity不同的是如果数据位是8位,则需要增加5位来进行ECC错误检查和纠正,数据位每增加一倍,ECC只增加一位检验位,也就是说当数据位为16位时ECC位为6位,32位时ECC位为7位,数据位为64位时ECC位为8位,依此类推,数据位每增加一倍,ECC位只增加一位。总之,在内存中ECC能够容许错误,并可以将错误更正,使系统得以持续正常的操作,不致因错误而中断,且ECC具有自动更正的能力,可以将Parity无法检查出来的错误位查出并将错误修正。

 


    目前一些厂商推出的入门级低端服务器使用的多是普通PC用的SD RAM,不带ECC功能,在选购时应该注意这个指标。

 

 

来源:ZOL报价网,http://detail.zol.com.cn/product_param/index565.html

<think>好的,我现在需要回答用户关于“ECC支持是什么”的问题。首先,我应该回忆一下自己对ECC的了解,确保信息的准确性。然后,按照用户提供的系统级指令,我需要组织一个结构清晰的中文回答,同时注意数学表达式的正确使用。 首先,ECC的全称是Error-Correcting Code,即纠错码。它主要用于检测和纠正数据在传输或存储过程中发生的错误。接下来,我需要分步骤解释ECC支持的概念、原理、应用场景以及优缺点。 在概念部分,需要简要说明ECC的作用,比如它在内存、存储和通信中的重要性。然后,原理部分可能需要提到一些常见的ECC类型,比如海明码、里德-所罗门码,以及它们的数学基础,比如线性代数或有限域理论。这里可能会涉及到数学公式,例如海明码的校验方程,或者里德-所罗门码的多项式表示,需要用行内或独立公式来展示。 应用场景方面,可以提到ECC内存、SSD、无线通信等。优缺点部分则需要平衡ECC的优势(如提高可靠性)和成本(如延迟和硬件开销)。 需要注意用户提到的格式要求:行内数学表达式用$...$,独立公式用$$...$$并单独成段。例如,当提到海明码的校验位计算时,可能需要写一个例子,如$r$个校验位可以检测和纠正单个错误,其中$2^r \geq k + r + 1$,这里$k$是数据位长度。或者,在里德-所罗门码中,用多项式插值来描述编码过程,例如生成多项式$C(x) = D(x) \cdot G(x)$,其中$D(x)$是数据多项式,$G(x)$是生成多项式。 同时,要确保LaTeX语法正确,比如积分符号的正确写法,上下标的位置等。例如,用户示例中的积分公式是$( \int_{-\pi}^{\pi} \cos(nx)\sin(mx)dx = 0 $,但这里可能需要使用行内公式,并确保括号匹配。不过用户提供的例子可能有误,实际使用时需要注意正确的括号闭合。 在结构上,按照用户的指示,分步骤解释,可能分为以下几个部分: 1. ECC支持的定义 2. 基本原理(包括数学原理) 3. 常见类型(海明码、里德-所罗门码等) 4. 应用场景 5. 优缺点 6. 总结 在撰写数学公式时,比如海明码的校验位计算,可能需要使用独立公式块。例如,当解释海明码如何定位错误位置时,可以写: 假设数据位为$k$,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值