pytorch 之 __call__, __init__,forward

本文介绍了PyTorch中关键的`__call__`,`__init__`和`forward`函数的作用。在PyTorch中,通过`__call__`使得模型可以像函数一样调用,自动触发`forward`执行计算。当调用model(x)时,底层会自动调用`forward`方法。此外,文章还提到了`super()`在类继承中的作用,并概述了调用`forward`方法的详细流程,涉及Module和Function的交互过程。" 111887646,10535898,信息化工程监理费用标准指南,"['信息系统集成', '工程监理', '服务管理', '费用标准', '信息技术']
摘要由CSDN通过智能技术生成

在学习pytorch之前,你会看到这样一段代码:

import torch
import torch.nn as nn
import torch.nn.functional as F
 
class Net(nn.Module):
 
    def __init__(self):
        super(Net, self).__init__()
        #1个输入图像通道,6个输出通道,3x3平方卷积核
        self.conv1 = nn.Conv2d(1, 6, 3)
        self.conv2 = nn.Conv2d(6, 16, 3)
        # an affine operation: y = Wx + b
        self.fc1 = nn.Linear(16 * 6 * 6, 120)  # 6*6 from image dimension 
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
 
    def forward(self, x):
        # Max pooling over a (2, 2) window
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        # If the size is a square you can only specify a single number
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值