LLM应用:Prompt flow vs LangChain

Promptflow作为一个Microsoft开源的工具,注重LLM应用的高质量效果,强调Prompt的设计和优化。它提倡以效果为中心的评估方法,提供实验管理和可视化工具,与LangChain相比,更倾向于实战和经验总结。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

Prompt flow和LangChain都是LLM时代,为高效地构建LLM应用而生。

Prompt flow是Microsoft开源的,其诞生时,LangChain已经很有名气了。

所以作为后生的Prompt flow会为我们带来哪些新的东西呢?

​​​​​​​

Prompt flow带来新的设计理念

概述:

Prompt flow提供了一套开发工具,并通过实验来构建高质量的LLM应用程序,而不是一套框架(LangChain)。

可见其重点是聚焦在LLM应用程序的效果(质量)。

而这正是因LLM的不确定的特点所引发的新的思考方式。

所有用到的Prompt都要显示出来

当前的LLM应用,最重要的一个特点是围绕“prompt”提示词。

任何为了构建LLM应用而提供的工具or框架,都应该优先专注于prompt设计以及prompt的调优。

Prompt特点

Prompt的特点是不稳定(不确定)。

同一套Prompt在不同的LLM里,其效果是不一样的。

甚至是对于同一个LLM的不同版本,其效果也是无法保证一致的。

Prompt显示

所以在实际构建LLM应用时,任何用到Prompt的地方,都要能方便的调优。

由此可以推导出,在实际构建LLM应用时,任何用到Prompt的地方都需要显示出来,可以被修改,可以被调优。

而那些将Prompt隐藏在框架里的方式,很大概率会导致LLM应用的效果不一致,这时候就只能去修改框架了。

以效果评估为中心的工作方式

因Prompt的不稳定性,所以在LLM应用构建时,需要重点关注效果。

类似算法的常见评估指标:准确率、召回率等。

LLM应用的质量(效果)也需要一套评估标准。

Prompt flow为评估任务提供了很多的工具:

  1. 将评估程序转化为评估流
  2. 基于SDK/CLI的实验及评估管理(会记录每次评估的过程)
  3. 可将评估集成到CICD中

增强可视化

LLM应用中使用到的ReAct、RAG等模式,本身并不是新发明的。

其更多的是表达与外部系统的交互,例如与Search Engine的交互,与知识库的交互,与本地数据的交互等。

交互可以认为就是API调用。

在LLM应用构建以效果评估为中心时,我们需要明确的知道每一个交互步骤具体是怎么样的,每一个步骤的效果如何。

因此交互步骤级别的可视化就很有必要,可极大的提升研发和评估效率。

以上便是Prompt flow和LangChain的区别。

显而易见,更多的是理念上区别。

Prompt flow更像是实战派,通过在实战中总结经验,通过第一性原理,找到本质的地方,然后对齐抽象和封装。

<think>好的,用户之前问过如何基于大模型构建智能体,现在他们想知道有没有快速按业务场景构建智能体应用的方法。首先,我需要明确用户的需求。他们可能已经了解了构建智能体的基本步骤,但现在希望快速落地到具体业务中,所以需要更高效的方法论或工具。 用户可能是企业中的技术负责人或开发者,希望快速开发智能体应用来满足业务需求,比如客服、数据分析等。他们可能遇到时间紧张、资源有限的问题,需要现成的解决方案或框架。 接下来,我需要整理快速构建的方法。可能包括使用现有平台(如LangChain)、模块化设计、模板化流程、微调与提示工程结合、低代码工具、RAG增强、场景化知识库、评估迭代、云服务和合规性考虑。这些点需要具体举例,比如平台有哪些,模块如何划分,模板的例子等。 同时,要结合用户之前的回答,确保技术术语和结构一致。比如之前提到了感知模块、推理决策模块,现在可以对应到模块化设计中的组件。还要注意用户提到的关键技术,如强化学习、向量数据库,可能在快速构建中如何简化应用。 需要检查是否有遗漏的关键点,比如是否提到评估和合规性,这些对于实际应用很重要。另外,用户可能需要知道实际案例,比如客服、销售场景的具体实现步骤,帮助他们更好地理解。 最后,确保回答结构清晰,分点明确,使用用户熟悉的术语,并给出实用建议,如推荐平台和工具,以及开发路线图,帮助他们快速启动项目。</think>以下是基于业务场景快速构建智能体应用的系统化方法,结合最新工程实践与技术方案: ### 一、场景化构建方法论 **1. 四层加速框架** $$构建速度 = \frac{场景适配度 \times 工具成熟度}{实现复杂度}$$ 通过领域知识注入、预训练适配器、业务API封装、交互模板复用四个维度加速 **2. 模块化技术栈** | 层级 | 组件示例 | 接入时间 | |------------|-----------------------------------|----------| | 基础模型 | GPT-4o/Claude/Gemini | <1小时 | | 中间件 | LangChain/LlamaIndex | 2-4小时 | | 业务适配器 | 行业知识库/专属API | 4-8小时 | | 交互界面 | Gradio/Streamlit/微信机器人SDK | 1-2小时 | ### 二、五大关键加速技术 **1. 模板化工作流引擎** ```python # 典型业务处理流程模板 def biz_agent_flow(input): context = memory_retriever(input) # 记忆召回 enriched_input = prompt_enricher(input) # 提示增强 response = llm.generate(enriched_input) # 大模型生成 validated = safety_checker(response) # 安全校验 return action_executor(validated) # 动作执行 ``` **2. 混合微调策略** 采用LoRA+Prompt Tuning组合方法: $$ \Delta W = B \cdot A + \alpha P $$ 其中$A,B \in \mathbb{R}^{d×r}$为低秩矩阵,$P$为可学习提示向量,实现快速领域适配 **3. 场景知识增强** 使用RAG(检索增强生成)技术构建业务知识库: $$ p(y|x) = \sum_{z \in TopK(D,x)} p(z|x)p(y|x,z) $$ 典型实现方案: - 文本块切分:滑动窗口$$w
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hugo Lei

赏你了,我的一点心意

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值