1. 最大信息系数
来自哈佛大学,Broad研究院的研究人员发表了题为“Detecting novel associations in large data sets Science”的文章,
介绍了一种强大的在庞大数据集中发现潜在重要关系的统计方法,这种方法能快速通过给不同类型关联进行评估,从而发现广泛范围的关系类型,这将有助于生物学,及其它学科的研究,相关成果2011公布在Science杂志上。
http://blog.sciencenet.cn/blog-113146-527481.html
http://labs.chinamobile.com/mblog/382108_159645
http://www.cas.cn/xw/kjsm/qkzl/201201/t20120104_3421801.shtml
2. Affinity Propagation聚类算法的优点简介
Affinitiy Propagation Clustering Algorithm(AP聚类算法)是我最近在一篇07年发表在Science上的文章中看到的。文章题目叫做《Clustering by Passing Messages Between Data Points》。
文中就介绍了这种独特的聚类算法,该算法可以对各种数据进行聚类分析,具体的应用领域包括图像、文本、生物信息学等等。
http://blog.sciencenet.cn/blog-629275-588650.html
来自哈佛大学,Broad研究院的研究人员发表了题为“Detecting novel associations in large data sets Science”的文章,
介绍了一种强大的在庞大数据集中发现潜在重要关系的统计方法,这种方法能快速通过给不同类型关联进行评估,从而发现广泛范围的关系类型,这将有助于生物学,及其它学科的研究,相关成果2011公布在Science杂志上。
http://blog.sciencenet.cn/blog-113146-527481.html
http://labs.chinamobile.com/mblog/382108_159645
http://www.cas.cn/xw/kjsm/qkzl/201201/t20120104_3421801.shtml
2. Affinity Propagation聚类算法的优点简介
Affinitiy Propagation Clustering Algorithm(AP聚类算法)是我最近在一篇07年发表在Science上的文章中看到的。文章题目叫做《Clustering by Passing Messages Between Data Points》。
文中就介绍了这种独特的聚类算法,该算法可以对各种数据进行聚类分析,具体的应用领域包括图像、文本、生物信息学等等。
http://blog.sciencenet.cn/blog-629275-588650.html