本文介绍了一种发现两个随机变量之间依赖关系强度的度量MIC(最大信息系数,类似于相关系数的作用)。MIC具有以下性质和优势:
MIC度量具有普适性。其不仅可以发现变量间的线性函数关系,还能发现非线性函数关系(指数的,周期的);不仅能发现函数关系,还能发现非函数关系(比如函数关系的叠加,或者有趣的图形模式)。
MIC度量具有均衡性。对于相同噪声水平的函数关系或者非函数关系,MIC度量具有近似的值。所以MIC度量不仅可以用来纵向比较同一相关关系的强度,还可以用来横向比较不同关系的强度。
MIC度量计算的方法。具有两个属性的数据点的集合分布在两维的空间中,使用m乘以n的网格划分数据空间,使落在第(x,y)格子中的数据点的频率作为P(x,y)的估计即
,使落在第x行的数据点的频率作为P(x)的估计,同理获得P(y)的估计。然后计算随机变量X、Y的互信息。因为m乘以n的网格划分数据点的方式不止一种,所以我们要获得使互信息最大的网格划分。然后使用归一化因子,将互信息的值转化为(0,1)区间之内。最后,找到能使归一化互信息最大的网格分辨率,作为MIC的度量值。其中网格的分辨率限制为m x n < B,

文章介绍了最大信息系数(MIC),一个用于衡量随机变量间依赖关系的强弱度量,适用于线性和非线性关系。MIC具有普适性和均衡性,能有效比较不同关系的强度。通过仿真实验和公开数据集的应用,验证了MIC在发现高维数据中隐藏关联的效能,如在社会经济、基因表达和体育统计等领域。
最低0.47元/天 解锁文章
5万+

被折叠的 条评论
为什么被折叠?



